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CHAPTER 13

Electrophysiological Pharmacology of
Mesencephalic Dopaminergic Neurons

M. Diana and J.M. Tepper

We dedicate this chapter to the memory of Dr. Stephen J. Young, mentor,
colleague and friend. For decades Steve contributed tirelessly and selflessly to
the advancement of the science of countless students, colleagues and scientists
around the world. His presence is sorely missed.

A. Introduction
In spite of the fact that actions of dopamine, as a neurotransmitter in its own
right, were foreseen as early as the 1930s (Blaschko 1939) and explicitly 
postulated in the 1950s (Carlson et al. 1958), it took over a decade more to
begin to explore the electrophysiological features, characteristics, and respon-
siveness to drugs of central dopaminergic neurons (Bunney et al.1973b;Groves
et al. 1975). In the 1960s much effort was employed attempting to map the 
location of catecholamine neurons in the mammalian central nervous system.
The use of the histofluorescence technique (Falck et al. 1962) coupled with
lesion experiments enabled anatomists to locate dopaminergic cell bodies in the
mesencephalon (Anden et al. 1964; Bertler et al. 1964). Subsequent work
(Dahlstrom and Fuxe 1964; Anden et al. 1965; Ungerstedt 1971) refined and
extended those initial and pioneering findings and formed the basis for modern
anatomical (see Sesack this volume for an updated view), biochemical, and
electrophysiological investigation of central dopaminergic neurons.

Physiological studies of central dopaminergic neurons began with in vivo
extracellular recordings which described the basic electrophysiological and
pharmacological properties of mesencephalic dopaminergic neurons (Bunney
et al. 1973a,b). From the very beginning, the unusually long duration action
potential, the persistent low frequency of spontaneous discharge, including
unusually low frequency burst firing and slow conduction velocity (Deniau
et al. 1978; Guyenet and Aghajanian 1978), together with inhibitory
responses to dopamine and dopamine agonists such as apomorphine and
amphetamine (Bunney et al. 1973a,b; Groves et al. 1975) have been un-
animously recognized as the extracellular, electrophysiological “fingerprint”
of dopamine-containing neurons in the midbrain.



There are several compelling reasons for studying central dopaminergic
systems over and above their uniqueness and intrinsically interesting 
properties. Chief among them is the central role that they play in mediating
the effects of antipsychotic drugs, and in the neurobiology of many psy-
chotropic drugs, drug abuse, and addiction. In this chapter we review some of
the principal aspects of the neurobiology of dopaminergic neurons as they
relate to the pharmacology of psychotherapeutic drugs and drugs of abuse.
Electrophysiological studies of dopaminergic neurons have provided impor-
tant evidence implicating these cells as components of systems of funda-
mental importance in normal CNS functioning as well as in various
pathological conditions including degenerative disorders such as Parkinson’s
disease, schizophrenia, and drug addiction. Controversy and disagreement
with respect to the interpretation of data is common in the scientific literature,
and the literature on the neurophysiology and neuropharmacology of dopa-
minergic neurons is no exception. Where relevant, we will point out some of
the current areas of contention and discuss them in light of recent findings.

B. Anatomical Organization
Although some dopaminergic neurons are located elsewhere in the brain (i.e.,
tuberoinfundibular dopaminergic neurons that regulate the release of pro-
lactin from the anterior pituitary gland; Moore et al. 1987 and in the retina
where they regulate receptive field size by altering the conductance of elec-
trotonic synapses e.g., Teranishi et al. 1983), most of the dopaminergic
neurons in the central nervous system are located in the midbrain. In the
present chapter, we will focus on the dopaminergic pathways originating in the
mesencephalon which have been most extensively studied and whose function
has been most convincingly linked to human psycho- and neuropathology.
Although the topography of their inputs and outputs differs somewhat, the
mesencephalic dopaminergic neurons exist for the most part as a single con-
tinuous and contiguous group of cells, and the axon of many of these neurons
collateralizes to one or more additional target structures (Fallon 1981).
However, historically the midbrain dopaminergic cell groups and their 
projections have been functionally subdivided into three systems: the nigro-
striatal, mesolimbic, and mesocortical dopaminergic systems.

Most of the cell bodies of origin of the nigrostriatal dopaminergic system
are located in the substantia nigra pars compacta (A9 in the terminology of
Dahlstrom and Fuxe 1964) with the remainder being located in the pars 
reticulata. The neurons are medium to large sized, multipolar, fusiform, or
polygonal in shape and emit 3–5 large, rapidly tapering smooth dendrites.There
is no local axon collateral arborization within the substantia nigra (Juraska et
al.1977;Tepper et al.1987b).These neurons send their axons anterior and rostral
to the neostriatum where they form Gray’s type II symmetrical synapses,mainly
on the dendrites or the necks of the dendritic spines of the striatal medium 
spiny projection neurons (Pickel et al. 1981; Freund et al. 1984) (See Fig.1).
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Fig. 1. Drawing tube reconstruction of an HRP-filled substantia nigra pars compacta
neuron that was antidromically activated from both ipsilateral globus pallidus and
neostriatum. The inset is drawn approximately to scale to illustrate the location of the
dendritic arborization of the neuron within substantia nigra. The coordinates refer to
the location of the coronal section from the atlas of Konig and Klippel (1963). The
arrow points to the proximal portion of the axon, which emerges from a dendrite. PC,
pars compacta, PR, pars reticulata, ML, medial lemniscus. (Reproduced from Tepper
et al. 1987b with permission of the publishers)



Most of the cells of origin of the mesolimbic dopaminergic system are
located medial to the main body of the substantia nigra pars compacta in the
ventral tegmental area (A10 in the terminology of Dahlstrom and Fuxe 1964)
and medial substantia nigra. These neurons project to the ventral part of the
striatal complex, including the nucleus accumbens (both core and shell) and
the olfactory tubercle.

The mesocortical dopaminergic projection arises from the mediodorsal,
most parts of the pars compacta and ventral tegmental areas (VTAs) and
innervates the prefrontal, cingulate, perirhinal, and entorhinal cortices in a
loosely topographical manner (for review see Fallon and Laughlin 1995).

The most caudal, lateral, and superior extension of the midbrain dopami-
nergic cell group, and the smallest of the three cell groups, is termed the
retrorubral field (A8 in the terminology of Dahlstrom and Fuxe 1964) and
innervates largely striatal regions. For a more detailed description of the
anatomical organization of mesencephalic dopaminergic neurons in rat, the
reader is referred to other chapters in this volume and to the excellent review
by Fallon and Laughlin (1995).

C. Basic Electrophysiological Properties
I. Extracellular Recordings

In in vivo extracellular recordings from anesthetized adult rats, midbrain
dopaminergic neurons fire spontaneously at slow rates, averaging around 
4 spikes per second (Bunney et al. 1973b; Deniau et al. 1978; Guyenet and
Aghajanian 1978; Bunney 1979; Tepper et al. 1982). Dopaminergic neurons
exhibit three distinct modes or patterns of firing. The most common pattern
of activity in vivo is a random, or occasional mode of firing characterized by
an initial, prolonged trough in the autocorrelation function representing a long
post-firing inhibition. The next most common firing pattern is a very regular,
pacemaker-like firing, characterized by very regular interspike intervals with
a low coefficient of variation, and a lack of bursting. The third and least
common mode of firing is bursty firing, characterized by stereotyped bursts of
2–8 action potentials in which the first intraburst interspike interval is around
60ms, followed by progressively increasing interspike intervals and progres-
sively decreasing spike amplitudes (Wilson et al. 1977; Grace and Bunney
1984a,b; Tepper et al. 1995). In anesthetized, unanesthetized, and freely moving
rats (Freeman et al. 1985; Diana et al. 1989), dopaminergic neurons often
switch between different firing modes, and these firing patterns can best be
thought of as a existing along a continuum, with the pacemaker-like firing on
one end and bursty firing on the other (Fig. 2). The bursty mode of firing has
generated particular interest as action potentials fired in bursts have been
linked to an increased overflow of dopamine in terminal areas compared to
an equal number of evenly spaced action potentials (Gonon 1988) which could
alter dopaminergic neurotransmission in axonal terminal fields qualitatively
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Fig. 2. Autocorrelograms of representative neurons exhibiting the three firing modes
of dopaminergic neurons in vivo. Above each autocorrelogram is the first approxi-
mately 15s of the spike train used to create the autocorrelogram. Bin width = 3ms.
(Reproduced from Tepper et al. 1995 with permission of the publishers)



as well as quantitatively (e.g., Gonon 1997), and which may play a role in the
dendritic release of dopamine (Bjorklund and Lindvall 1975; Groves et al.
1975; Cheramy et al. 1981) as well.

Anesthesia affects the expression of the three firing patterns and their
responsiveness to drugs (Mereu et al. 1984b; Kelland et al. 1990a). Although
all three firing patterns are expressed in unanesthetized freely moving or
immobilized preparations, burst firing is more common in unanesthetized rats
than under any anesthetic (Wilson et al. 1977; Freeman et al. 1985; Diana
et al. 1989; Kelland et al. 1990a). Different anesthetics also differentially
affect the distribution of firing patterns; burst firing is expressed least under
urethane, is intermediate under chloral hydrate, and is expressed most under
ketamine anesthesia with an incidence almost equal to that observed in
unanesthetized preparations (Kelland et al. 1990a).

The extracellularly recorded action potential of midbrain dopaminergic
neurons is of unusually long duration, almost always greater than 2ms and
sometimes as much as 5ms depending on the level of depolarization of the
neuron, and often displays a notch or inflection on the initial rising phase
termed an initial segment-somatodendritic (IS-SD) break (Bunney et al.
1973b; Guyenet and Aghajanian 1978; Grace and Bunney 1983b) by analogy
to a similar phenomenon in spinal motoneurons (Coombs et al. 1957; Eccles
1957).

Early studies using antidromic activation of mesencephalic dopaminergic
neurons from terminal fields in striatum revealed that these neurons have very
slow conduction velocities (~0.5m/s in rat; Deniau et al. 1978; Guyenet and
Aghajanian 1978) consistent with their thin (less than 1 mm) and unmyeli-
nated nature (Tepper et al. 1987b). Most of the time (64%; Trent and Tepper
1991) the antidromic response consists of a small spike, assumed to be an 
initial segment (IS) spike (Coombs et al. 1957; Eccles 1957; Guyenet and 
Aghajanian 1978). Multiple discrete antidromic latencies are often present,
presumably reflecting the highly branched nature of the terminal field, giving
rise to multiple sites of initiation of the antidromic spike (Collingridge et al.
1980; Tepper et al. 1984a).

Although many of the early extracellular recording studies focused on
dopaminergic neurons in substantia nigra, the majority of subsequent studies
revealed that with a few exceptions, VTA neurons exhibit electrophysiologi-
cal and pharmacological properties that are similar or identical to those of 
substantia nigra dopaminergic neurons in most ways (e.g., Bunney 1979;
Wang 1981a–c; Freeman et al. 1985; Mereu et al. 1985; Freeman and Bunney
1987; Clark and Chiodo 1988).

The most commonly reported difference between A9 and A10 dopami-
nergic neurons has to do with the pattern and rate of spontaneous activity in
vivo. Although A10 neurons exhibit the same range of firing patterns as A9
neurons, many studies report that the incidence of burst firing is greater among
VTA neurons than substantia nigra pars compacta neurons (Grenhoff et al.
1986, 1988; Charlety et al. 1991). Interestingly, it does not appear as if the
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characteristics of the burst firing are different; most of the burst parameters
are the same among A9 and A10 neurons, but the proportion of A10 neurons
firing in the bursty mode is greater (Chiodo et al. 1984; Grenhoff et al. 1986,
1988; Charlety et al. 1991). Despite this consistent difference, the mean firing
rates of A9 and A10 dopaminergic neurons are usually reported to be about
the same (e.g., Wang 1981a,b; Grenhoff et al. 1986, 1988; Freeman and
Bunney 1987; Gariano et al. 1989b; Shepard and Bunney 1988; Charlety
et al. 1991; but see also Chiodo et al. 1984). One reason put forth for the dif-
ference in proportion of burst firing neurons is a difference in autoreceptor
number and/or sensitivity (Chiodo et al. 1984), but for reasons discussed below
(see discussion in Sect. E.IV) this does not seem the most likely explanation.
Rather, as suggested previously (e.g., Grenhoff et al. 1988) a difference in
afferent inputs may be responsible. Various afferents to midbrain dopami-
nergic neurons and the effects they have on firing rate and pattern are dis-
cussed below (see Sect. D). In that context, it is interesting to note that one of
the most striking qualitative differences between A9 and A10 neurons is that
dopaminergic neurons in the VTA appear to receive a significantly greater
number of glutamatergic asymmetric, presumably excitatory, synaptic contacts
than those in the substantia nigra (Smith et al. 1996).

II. Intracellular Recordings

The first data from intracellular recordings from identified rat dopaminergic
neurons were published by Grace and Bunney in a memorable series of
papers in the early 1980s (Grace and Bunney 1980, 1983a,b, 1984a,b). This
accomplishment was rendered even more impressive by the fact that these
were in vivo recordings from the substantia nigra, a structure deep in the 
midbrain where the dopaminergic neurons are situated in a layer only a few
cells thick. These recordings verified that the unusually long duration action
potential was not an artifact of damage or extracellular recording. The action
potential had an inflection that, upon digital differentiation, was virtually 
identical to the IS-SD break previously noted in extracellular recordings.
Furthermore, the small antidromic spike observed extracellularly could be
seen intracellularly and converted to a full spike by injecting depolarizing
current, consistent with its tentative extracellular identification as an IS spike.
Spontaneous spikes were seen to arise from a slow depolarization and were
followed by large amplitude, long-lasting spike afterhyperpolarizations.
Application of hyperpolarizing current pulses revealed a slowly developing
inward rectification, and the episodes of slow-burst firing first seen with 
extracellular recordings were observed to occur superimposed upon large
spontaneous depolarizations (Grace and Bunney 1980, 1983a,b, 1984a,b).

Subsequent in vitro recordings revealed that the long, slow afterhyper-
polarization was due to a calcium-activated potassium conductance and that
the slowly developing inward rectification was blocked by tetraethylammo-
nium (TEA), suggesting its mediation by Ih (Kita et al. 1986). The slow after-
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hyperpolarization is very sensitive to apamin, and plays a significant role in
regulating the firing pattern of dopaminergic neurons (Shepard and Bunney
1988; Ping and Shepard 1996). A number of pharmacologically and electro-
physiologically distinct low- and high-threshold calcium conductances have
been identified in midbrain dopaminergic neurons (e.g., Llinás et al. 1984;
Nedergaard et al. 1988, 1993; Nedergaard and Greenfield 1992; Kang and
Kitai 1993a,b; Cardozo and Bean 1995; Galarraga and Bargas 1995; Wilson
and Callaway 2000). Dopaminergic neurons also exhibit several different
types of voltage-dependent potassium channels (Silva et al. 1990).A transient,
4-aminopyridine (4-AP)-sensitive, TEA-insensitive A-current that is largely
inactivated at the most stable subthreshold membrane potentials is expressed,
as is a sustained outward current and at least two different types of calcium-
activated potassium current (Silva et al. 1990; Cardozo and Bean 1995),
plus the inwardly rectifying Ih mentioned above. Although the conductances
responsible for the bursty and random firing patterns have not yet been 
identified conclusively, it appears that the pacemaker firing pattern emerges
as a result of an intrinsic membrane potential oscillation, resulting from a low
threshold, non-inactivating calcium conductance, and a calcium-activated
potassium conductance (Harris et al. 1989; Yung et al. 1991; Nedergaard and
Greenfield 1992; Kang and Kitai 1993a,b; Wilson and Callaway 2000). A
single action potential is fired at the peak of the oscillation and the resulting
calcium-dependent spike afterhyperpolarization is sufficient to prevent any
further spiking. Although results from early studies suggested that the
dopaminergic cell bodies were electrically inexcitable (Grace and Bunney
1983b), excised patch clamp recordings from the soma and dendrites of
dopaminergic neurons have revealed voltage-gated inward and outward 
currents underlying active propagation of spikes in the soma and dendrites of
these neurons (Hausser et al. 1995).

The biggest difference between dopaminergic neurons recorded in vivo
and in vitro is the absence of the random or bursty firing patterns in the slice
preparation, likely due to the loss of afferents in the slice (Grace 1987; Lacey
et al. 1989; but see also Mereu et al. 1997). Another difference is the higher
input resistance observed in vitro (70–250MW; Kita et al. 1986) compared to
in vivo (18–35MW; Grace and Bunney 1983a) also presumably due to the
reduced number of functional afferents in the slice preparation (Fig. 3).

D. Afferents to Dopaminergic Neurons
I. GABAergic Afferents

The vast majority of afferent boutons synapsing on dopaminergic perikarya
and dendrites in substantia nigra, perhaps as much as 70%–90%, are g-
aminobutyric acid (GABA)ergic. Most of the GABAergic input originates
from the striatum, globus pallidus, and the pars reticulata of the substantia
nigra (Ribak et al. 1976, 1980; Somogyi et al. 1981; Nitsch and Riesenberg
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Fig. 3A–D. Electrophysiological identification of substantia nigra dopaminergic
neurons in vitro. A Spontaneously active dopaminergic neuron firing in the typical
pacemaker-like mode seen in vitro. Constant current injection of hyper- and depolar-
izing pulses manipulated pacemaker-like firing between 0.8 and 4 Hz. Action potential
amplitudes are truncated due to aliasing. B Action potentials were of long duration 
(>2ms) and exhibited large afterhyperpolarizations. C Intracellular injection of current
pulses revealed a slow depolarizing ramp potential in the depolarizing direction and a
strong time-dependent inward rectification when the membrane was hyperpolarized.
D Current–Voltage plots show nearly linear slope and minimal inward rectification at
the onset of hyperpolarizing current pulses (open circles) and a much more pronounced
slowly activating inward rectification when Ih begins to activate after about 100ms
(solid triangles). (Reproduced from Iribe et al. 1999 with permission of the publishers)



1988; Smith and Bolam 1989; Tepper et al. 1995). Dopaminergic neurons
express both of the two principal subtypes of GABA receptor, GABAA and
GABAB receptors, and are quite effectively hyperpolarized by bath applica-
tion of GABAA- or GABAB-selective agonists in vitro (Lacey 1993).

There is a massive GABAergic input to the substantia nigra from the
neostriatum, both the dorsal and ventral parts. Although most of these fibers
synapse on the non-dopaminergic neurons in the pars reticulata (Grofova
and Rinvik 1970), there are monosynaptic inputs to dopaminergic neurons
(Somogyi et al. 1981; Bolam and Smith 1990). Early in vivo recording studies
showed that striatal stimulation produces monosynaptic inhibitory post-
synaptic potentials (IPSPs) that could be blocked by picrotoxin in substantia
nigra, thus suggesting that striatonigral inhibition was mediated by GABAA

receptors; however, the neurons were not identified in these studies and
appear to have been pars reticulata GABAergic neurons (Precht and
Yoshida 1971; Yoshida and Precht 1971).

Later in vivo intracellular recording studies from identified substantia
nigra dopaminergic and non-dopaminergic neurons also revealed a mono-
synaptic inhibitory postsynaptic potential evoked by striatal stimulation that
is also mediated by a GABAA receptor (Grace and Bunney 1985), and the
striatal-induced inhibition of antidromically identified nigrostriatal dopami-
nergic neurons recorded extracellularly in vivo is abolished by the GABAA

receptor antagonist, bicuculline, but not by the GABAB receptor antagonist,
CGP-55845 A (Paladini et al. 1999a).

In contrast, in vitro studies show that both GABAA and GABAB IPSPs
are elicited in substantia nigra and VTA dopaminergic neurons following 
stimulation of various places within the slice (Hausser and Yung 1994),
although it is difficult to be certain of the origin of these responses. However,
activation of D1 receptors in substantia nigra has been shown to selectively
facilitate GABAB responses elicited by high frequency trains of stimuli 
delivered locally to dopaminergic neurons in vitro (Cameron and Williams
1993). Since only the striatonigral afferents to nigra are known to express 
D1 receptors (Harrison et al. 1990), these data suggest that at least some of
the GABAB IPSPs are mediated via the striatonigral pathway (Cameron and
Williams 1993). One possible explanation for the different results obtained in
vivo and in vitro is that most of the in vivo studies used single-pulse stimuli,
whereas Cameron and Williams (1993) used trains. However, attempts to
evoke GABAB-mediated responses in vivo by stimulating the striatum 
with high frequency trains similar to those used in vitro were unsuccessful
(Paladini et al. 1999a). It is also possible that for some reason the stimulus-
evoked release of GABA has better access to GABAB receptors in the slice
preparation than it does in vivo, perhaps because of reduced GABA uptake,
or because the stimulation in vitro causes activation of a population of
GABAergic afferents that is not activated in vivo. Along these lines it is inter-
esting to note that spontaneous miniature IPSPs in dopaminergic neurons
appear to be exclusively GABAA-mediated (Hausser and Yung 1994).
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Although the origin of the GABAB responses in vitro remain unclear, the bulk
of the data suggest that in vivo, striatal GABAergic inhibition of dopami-
nergic neurons is mediated largely or exclusively by GABAA receptors.

There is also a significant input to substantia nigra from globus pallidus.
Although the pallidal projection also appears to terminate preferentially on
non-dopaminergic neurons of the substantia nigra pars reticulata (Smith and
Bolam 1989), there is also a significant projection to pars compacta (Hattori
et al. 1975). Stimulation of the globus pallidus elicits monosynaptic IPSPs in
dopaminergic neurons in vivo (Tepper et al. 1987b), and like striatal-evoked
inhibition, inhibition of nigrostriatal neurons evoked by electrical stimulation
of the globus pallidus can be completely blocked by GABAA, but not GABAB

antagonists (Paladini et al. 1999a).
The third major GABAergic input to dopaminergic neurons arises from

axon collaterals of pars reticulata neurons. Grace and colleagues (Grace and
Bunney 1979, 1985; Grace et al. 1980) provided an important clue to under-
standing synaptic responses in substantia nigra by showing that there is a 
reciprocal relation between the spontaneous firing of non-dopaminergic
neurons in the pars reticulata and dopaminergic neurons of the pars compacta.
A second important finding was that very low intensity stimulation of neo-
striatum produced excitation of dopaminergic neurons (Grace and Bunney
1985).These data were interpreted to indicate that there exists a monosynaptic
pathway between a population of GABAergic neurons in pars reticulata and
dopaminergic neurons in pars compacta.

The pars reticulata neuron observed to fire reciprocally with dopami-
nergic neurons in vivo in extracellular recordings was not identified in the first
studies except to note that the neurons fired between 15 and 40Hz, exhibited
brief-duration (~0.5ms) spikes, were excited by tail pinch, were more 
sensitive to inhibition by GABA than dopaminergic neurons, could not be
antidromically activated from thalamus, and comprised a subpopulation of
non-dopaminergic pars reticulata neurons (Grace and Bunney 1979; Grace
et al. 1980). However, subsequent reports tentatively identified the neuron as
an interneuron (e.g., Grace and Bunney 1985, 1986; Smith and Grace 1992;
Grace et al. 1997). This suggestion of a class of pars reticulata interneurons
that mediate a number of indirect effects on dopaminergic neurons has by now
been generally accepted and is widely cited by a number of physiologists and
pharmacologists (e.g., Mereu and Gessa 1985; Johnson and North 1992;
Santiago and Westerink 1992; Zhang et al. 1992, 1993). However, although
suggested on the basis of Golgi staining studies (e.g., Schwyn and Fox 1974;
Juraska et al. 1977; Francois et al. 1979) the existence of one or more classes
of nigral interneurons has never been conclusively identified, an admittedly
difficult task.

Pars reticulata projection neurons that send their main axons to tectum
or thalamus issue axon collaterals within both substantia nigra pars reticulata
and pars compacta (Deniau et al. 1982; Grofova et al. 1982). These collaterals
synapse on other non-dopaminergic pars reticulata neurons (Deniau et al.
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1982) as well as on dopaminergic neurons (Tepper et al. 2002). When these
pars reticulata neurons are selectively activated antidromically by electrical
stimulation of the thalamus or tectum, most dopaminergic neurons are 
inhibited (Tepper et al. 1995). This inhibition is blocked by the selective
GABAA receptor antagonist, bicuculline, but not by the selective GABAB

receptor antagonists, 2-hydroxysaclofen or CGP-55845 A (Tepper et al. 1995;
Paladini et al. 1999a). Thus, pars reticulata GABAergic projection neurons
provide an important monosynaptic GABAergic input to nigral dopami-
nergic neurons.

In contrast to GABAA receptor blockade, GABAB receptor blockade not
only failed to block inhibition elicited by electrical stimulation of striatal,
pallidal, or nigral reticulata afferents, but rather potentiated it (Paladini et al.
1999a), as shown in the example in Fig. 4. This is likely due to the presence of
inhibitory presynaptic GABAB receptors on the terminals of GABAergic
afferents to the dopaminergic neurons. These presynaptic receptors serve to
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Fig. 4A–C. Presynaptic inhibitory GABAB re-
ceptors present on the terminals of local colla-
terals of pars reticulata nigrothalamic neurons are
responsible for masking the inhibitory effects of
antidromic activation of nigrothalamic neurons
on dopaminergic neurons. The presynaptic inhibi-
tion is unmasked by local application of the selec-
tive GABAB receptor antagonist, CGP-55845A.
A Stimulation of thalamus (1.0mA) fails to affect
the firing of a nigrostriatal dopaminergic neuron.
B Application of CGP-55845A reveals an inhibi-
tion (suppression to 0% of control for 24ms dura-
tion). C Application of bicuculline together with
CGP-55845 A abolishes the unmasked inhibition.
Peri stimulus time histograms (PSTH) consist of
100 trials each with 2-ms bin width. (Reproduced 
from Paladini et al. 1999a with permission of the
publishers)



inhibit evoked release of GABA (Giralt et al. 1990) and reduce IPSP/C
amplitude (Hausser and Yung 1994; Shen and Johnson 1997).There is appar-
ently enough endogenous GABA in the substantia nigra in vivo to activate
these autoreceptors such that when they are blocked by local application 
of GABAB antagonists, GABA release is enhanced and the postsynaptic
GABAA-mediated inhibition is increased (Paladini et al. 1999a).

In addition to their inhibitory effects on the rate of spontaneous activity,
the GABAergic inputs contribute significantly to the regulation of the firing
pattern of midbrain dopaminergic neurons. Local application of the GABAA

receptor antagonists, bicuculline or picrotoxin, causes dopaminergic neurons
to switch to the bursty firing pattern (Tepper et al. 1995; Paladini and Tepper
1999). The transition is quite robust, and is independent of the baseline firing
rate, firing pattern, or the change in firing rate due to application of the drug,
suggesting that it is not due simply to increased depolarization and/or firing
rate caused by blocking GABAA receptors. The effect is specific to blocking
GABAA receptors; blockade of GABAB receptors with 2-OH-saclofen or
CGP-55845 A produces a slight but consistent and statistically significant
reduction in firing rate and regularization of the firing pattern (Tepper et al.
1995; Paladini and Tepper 1999). This latter effect appears due to increased
GABA release as a result of blockade of the presynaptic GABAB receptors
discussed above. This results in increased stimulation of postsynaptic GABAA

receptors on dopaminergic neurons and decreased burst firing, probably 
due to the GABAA-mediated decrease in input resistance (Canavier 1999;
Paladini et al. 1999b). Subsequent experiments revealed that a significant
source of the GABAergic input that was blocked by bicuculline or picrotoxin
resulting in burst firing was the pars reticulata, and that the reticulata 
efferents could be effectively modulated by output from the globus pallidus
(Celada et al. 1999). Thus, increased activity in pallidum led to inhibition of
reticulata GABAergic projection neurons and disinhibition of nigrostriatal
dopaminergic neurons resulting in burst firing. Conversely, decreased activity
in pallidum led to increased firing of reticulata neurons and the abolition of
burst firing in dopaminergic neurons (Celada et al. 1999).Although the mech-
anism or mechanisms underlying endogenous burst firing in dopaminergic
neurons are incompletely understood (see below), it is clear that GABAergic
afferents, acting at postsynaptic GABAA receptors on dopaminergic neurons
can modulate the firing pattern of these neurons in vivo in an extremely 
powerful and consistent manner.

The roles and physiological significance of postsynaptic GABAB receptors
on mesencephalic dopaminergic neurons are less clear. The receptors are 
certainly present, and dopaminergic neurons respond to selective GABAB

agonists in vitro with a large conductance increase to potassium and a hyper-
polarization (Lacey et al. 1988; Lacey 1993), and local electrical stimulation
in slices of substantia nigra can elicit GABAB IPSPs or IPSCs (e.g., Sugita
et al.1992; Cameron and Williams 1993). On the other hand, neither the 
striatal, pallidal, nor pars reticulata inputs appear to stimulate GABAB recep-
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tors on dopaminergic neurons in vivo to any significant degree as discussed
above (Paladini et al. 1999a), so the source(s) of the input to GABAB post-
synaptic receptors remains unclear. In vivo, application of the GABAB agonist,
baclofen, reduces dopaminergic neuron firing rate and leads to a regulariza-
tion of firing pattern (e.g., Engberg et al. 1993). However, although 
intravenous administration of the selective GABA antagonist, CGP35348,
antagonized the effects of baclofen, it was without effect on firing rate or firing
pattern when given alone, suggesting that the receptor was not effectively 
stimulated in vivo under the conditions of the experiment, consistent with the
results of Tepper et al. (1995) and Paladini and Tepper (1999). On the other
hand, in a more recent study, SCH 50911, a novel GABAB antagonist, was
shown to increase the firing rate and burstiness of dopaminergic neurons when
administered intravenously, suggesting that the postsynaptic GABAB re-
ceptors were effectively stimulated by endogenous GABA (Erhardt et al.
1999). GABA, as well as GABAB agonists and antagonists will act both on
pre- and postsynaptic receptors, and it is likely that methodological differ-
ences, possibly differences in the potencies and/or tissue distribution of the
different GABAB antagonists, accounts for these discrepancies by altering the
balance of effects on the pre- and postsynaptic GABAB receptors. Thus at
present, the source(s) of inputs that activate GABAB receptors as well as 
the physiological significance of GABAB receptor activation in midbrain
dopaminergic neurons remain to be determined.

II. Glutamatergic Afferents

The best characterized glutamatergic (i.e., excitatory amino acid) afferents to
substantia nigra arise from the frontal cortex (Usunoff et al. 1982; Usunoff
1984; Sesack and Pickel 1992; Naito and Kita 1994), subthalamic nucleus
(STN; Chang et al. 1984; Kita and Kitai 1987; Damlama and Tepper 1993)
and pedunculopontine nucleus (PPN), which also sends cholinergic afferents
to substantia nigra (Moon-Edely and Graybiel 1983; Sugimoto and Hattori
1984; Clarke et al. 1987; Rye et al. 1987; Gould et al. 1989; Damlama and
Tepper 1993; Futami et al. 1995). Midbrain dopaminergic neurons express both
N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors (Mereu
et al. 1991) and respond to local application of glutamate in vivo with an
increase in spontaneous firing rate (Scarnati and Pacitti 1982). As the prin-
cipal mediators of excitatory synaptic transmission in substantia nigra, these
afferents have been the subject of considerable study. Moreover, glutamate
application induces an increase in burstiness in dopaminergic neurons (Grace
and Bunney 1984b; Overton and Clark 1992, 1997) as does intracellular
loading with calcium (Grace and Bunney 1984b), and the incidence of spon-
taneous burst firing has been reported to be decreased by NMDA antagonists
(Chergui et al. 1993). In addition, stimulation of NMDA receptors on
dopaminergic neurons in vitro produces a stereotyped form of a calcium-
independent rhythmic burst firing that appears to be dependent on sodium
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influx through the NMDA channel and the operation of an electrogenic
sodium pump (Johnson et al. 1992). Thus, it is as a potential mechanism for
inducing burst firing that the glutamatergic afferents, especially those origi-
nating in frontal and prefrontal cortex, have received special interest
(Overton and Clark 1997).

Glutamate also acts on dopaminergic neurons through metabotropic
receptors which are divided into eight subgroups (De Blasi et al. 2001).
Although it is unclear if all these subgroups are present on dopaminergic
neurons (Bonci et al. 1997) there have been reports describing the action 
of metabotropic glutamate receptor agonists on the electrophysiological 
properties of dopaminergic neurons in vitro and in vivo. In vitro intracellular
recordings studies obtained from rats slices, have reported that stimulation 
of metabotropic glutamate receptors with Trans-1-amino-cyclopentane-1,3-
dicarboxylate (t-ACPD), a selective agonist for the R1 subtype of the
metabotropic glutamate receptor, produces a depolarization (Mercuri et al.
1992) and a sustained increase in firing rate (Mercuri et al. 1993). This depo-
larization seems to be mediated by a cation-mediated inward current inde-
pendent of calcium mobilization (Guatteo et al. 1999). In contrast, other
studies have reported an IPSP after stimulation of mGluR1 (Fiorillo and
Williams 1998) and a blockade of this effect by amphetamine (Paladini et al.
2001). Furthermore, in the only published study on the role of metabotropic
glutamate receptors on dopaminergic neurons in vivo (Meltzer et al. 1997),
an inhibition followed by excitation of firing rate was reported after micro-
iontophoretic application of 1-aminocyclopentane-1,3-dicarboxylate (1 S,3R-
ACPD), a putative metabotropic glutamate receptor selective agonist and
both these effects were antagonized by application of the metabotropic 
glutamate receptor antagonist (S)-4-carboxy-phenylglycine. These findings
would imply that glutamate is not solely an excitatory neurotransmitter in the
midbrain but that its actions have to be viewed in a broader sense. At present
is unclear if the metabotropic glutamate receptor-mediated IPSP is due to the
particular stimulating conditions employed (Fiorillo and Williams 1998) or
really represents an effect of physiological importance. If the latter turns out
to be the case, it will add considerably to the role of glutamate on the regula-
tion of dopaminergic neurons and their response to drugs.

In the first report to implicate cortex (frontal and anterior cingulate) in 
the elicitation of bursting in nigrostriatal neurons, cortical stimulation in 
urethane-anesthetized rats was shown to elicit burst discharges that closely 
resembled spontaneous bursts (Gariano and Groves 1988). However, this
response occurred only in a very small proportion of nigral dopaminergic
neurons (5%), at a latency of over 200ms, and was preceded by a substantial
inhibition of firing (Nakamura et al. 1979; Gariano and Groves 1988). No
attempts to block the bursts with glutamate antagonists were made and given
the long latency, mediation by a monosynaptic glutamatergic input from cortex
seemed unlikely. Soon after, inactivating the prefrontal cortex by local cooling
was shown to abolish bursting and induce pacemaker-like firing in dopami-
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nergic neurons (Svensson and Tung 1989). On the other hand, lesions of
medial prefrontal cortex were largely without effect on the spontaneous 
activity of substantia nigra dopaminergic neurons, although there was a signi-
ficant reduction in the number of VTA neurons encountered per track (Shim
et al. 1996), consistent with a greater innervation of VTA dopaminergic
neurons by glutamatergic afferents compared to substantia nigra (Smith et al.
1996). Interestingly, the prefrontal lesions were associated with a slight increase
in the spontaneous firing rate of substantia nigra dopaminergic neurons (Shim
et al. 1996), perhaps due to the preferential site of termination of corticonigral
afferents on GABAergic pars reticulata neurons thereby activating feed-
forward inhibition onto the dopaminergic neurons (Hajos and Greenfield
1994; Tepper et al. 1995). Subsequent studies replicated the finding of initial
inhibition followed by extremely long latency burst responses after frontal 
cortical stimulation. They showed that the burst response could be blocked by
NMDA but not by non-NMDA antagonists (see Overton and Clark 1997 for
review), providing strong evidence for a role of the glutamatergic corticonigral
projection in the modulation of dopaminergic neuron firing pattern.

Reports of the effects of STN stimulation on the activity of substantia
nigra dopaminergic neurons in vivo have been, perhaps surprisingly, more con-
tradictory. In the earliest report, electrical stimulation of the subthalamic
nucleus was found to be excitatory to dopaminergic and non-dopaminergic
nigral neurons (Hammond et al. 1978). In a subsequent study that used local
infusions of bicuculline to stimulate the subthalamic nucleus pharmacologi-
cally, approximately equal numbers of excitatory and inhibitory responses
were found among dopaminergic neurons, although almost all of the non-
dopaminergic neurons in pars reticulata were excited (Robledo and Féger
1990). More recently, biphasic effects of electrical or pharmacological stimu-
lation of subthalamic nucleus on nigral dopaminergic neurons were again
reported, with an initial inhibition predominant following electrical stimula-
tion that was followed in 35% of the neurons by a burst-like response (Smith
and Grace 1992). Pharmacological activation of the subthalamic nucleus by
bicuculline infusion led to an initial decrease in firing rate and the incidence
of burst firing with the opposite biphasic effects following inactivation of the
subthalamic nucleus with muscimol (Smith and Grace 1992). In another study,
local infusions of GABA or bicuculline into subthalamic nucleus produced
decreases and increases in firing rate and burst firing in nigral dopaminergic
neurons, but these effects were observed in only about half of the neurons,
with the other half showing the opposite effects (Chergui et al. 1994).

The STN-evoked inhibitory responses seen in the in vivo studies are
almost certainly an indirect effect, resulting from subthalamic stimulation-
induced activation of GABAergic axons or neurons synaptically activated by
the stimulus. In vitro studies revealed that the depolarizing response seen in
response to subthalamic stimuli in dopaminergic neurons (Nakanishi et al.
1987) was composed of a nearly superimposed monosynaptic excitatory post-
synaptic potential (EPSP) comprising both NMDA and non-NMDA compo-
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nents, and a monosynaptic and/or polysynaptic GABAA-mediated IPSP (Iribe
et al. 1999). The monosynaptic IPSP arose from stimulation of descending
GABAergic striatonigral and/or pallidonigral fibers and was eliminated by
hemisection of the brain anterior to the subthalamic nucleus several days
before the in vitro recordings. In some cases, however, an IPSP remained after
the hemisection that could be abolished with bicuculline or 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX; Fig. 5). The latter effect indicates that the
IPSP arose from glutamatergic excitation of a GABAergic neuron whose sub-
thalamic input and outputs to dopaminergic neurons remained intact in the
slice preparation, most likely the pars reticulata GABAergic projection
neurons (Tepper et al. 1995; Iribe et al. 1999).

Stimulation of the PPN in vivo induces short latency excitation in a sig-
nificant fraction of nigral dopaminergic neurons (Scarnati et al. 1984). In brain
slices, stimulation of the PPN produces monosynaptic EPSPs that consist of
both glutamatergic and cholinergic components that appear to converge on
single dopaminergic neurons (Futami et al. 1995). The pharmacology of the
glutamatergic component is not well established; however, in one extra-
cellular recording study, NMDA-selective antagonists were ineffective at
blocking excitatory effects of pedunculopontine stimulation which were
blocked by broad spectrum glutamate antagonists, suggesting that in vivo the
predominant effect may be mediated principally by non-NMDA glutamate
receptors (DiLoreto et al. 1992). Compared to the subthalamic nucleus and
prefrontal cortex, inhibitory responses are relatively rare with pedunculopon-
tine stimulation. This may be because a larger proportion of pedunculopon-
tine afferents terminate on dopaminergic neurons and dendrites as opposed
to pars reticulata GABAergic neurons. For example, only about 10% of 
subthalamic afferents terminate on tyrosine hydroxylase-positive cells and
dendrites in substantia nigra, the remainder synapsing on non-dopaminergic
pars reticulata neurons, whereas almost 38% of boutons originating in the
pedunculopontine nucleus synapse on dopaminergic dendrites (Damlama
1994). Thus, the balance of input is shifted more towards the monosynaptic
pedunculopontine–dopaminergic neuron pathway than the disynaptic path-
way through pars reticulata (Iribe et al. 1999). Thus, although not yet as well
studied as the subthalamic afferents, the excitatory input from the pedun-
culopontine nucleus may prove to be at least equally important as a source of
monosynaptic excitation of dopaminergic neurons.

Although there are many reports that NMDA agonists elicit burst firing
in dopaminergic neurons in vivo and in vitro (Grace and Bunney 1984b;
Johnson et al. 1992; Overton and Clark 1992), and that kynurenate, a broad-
spectrum excitatory amino acid antagonist, inhibits burst firing (Charlety
et al. 1991), there are other reports that NMDA or l-glutamate, acting through
NMDA receptors as demonstrated by blockade of their effects with selective
NMDA antagonists, produced increases in midbrain dopaminergic neuron
firing rate without significantly increasing bursting in vitro (e.g., Seutin et al.
1990; Wang and French 1993; Connelly and Shepard 1997). In addition, non-
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NMDA, mGluR1 agonists have been reported to induce burst firing in
dopaminergic neurons (Meltzer et al. 1997), even in the presence of NMDA
receptor antagonists (Zhang et al. 1994). Blockade of the long-lasting spike
afterhyperpolarization by apamin also induces burst firing in vitro (Shepard
and Bunney 1988). Finally, rhythmic burst firing induced by NMDA or NMDA
plus apamin in vitro is abolished by GABAA receptor agonists (Paladini
et al. 1999b), suggesting that in vivo, NMDA-related burst firing may be con-
trolled or gated in a permissive fashion depending on the level of activity in
GABAergic afferents.

There is little doubt that the glutamatergic afferents to dopaminergic
neurons are the most important source of their excitatory input. However,
while it is virtually certain that glutamatergic inputs play an important role in
the modulation of dopamine neuron firing pattern (Overton and Clark 1997),
it is probably not the case that NMDA receptor stimulation of dopaminergic
neurons is exclusively or perhaps even primarily responsible for evoking
bursty firing in vivo. There is also good evidence that dopaminergic neuron
firing pattern is modulated to an important extent by other transmitter/
receptor systems including GABAergic (Tepper et al. 1995; Celada et al. 1999;
Paladini and Tepper 1999), cholinergic (Grenhoff et al. 1986; Futami et al.
1995; Kitai et al. 1999), and non-NMDA glutamatergic systems (Zhang et al.
1994; Meltzer et al. 1997).

III. Cholinergic Afferents

The substantia nigra is rich in acetylcholinesterase, and choline 
acetyltransferase-positive synapses are made onto the dendrites of dopami-
nergic neurons (Beninato and Spencer 1988). The principal source of the
cholinergic input is likely the pedunculopontine and laterodorsal tegmental
nuclei (Gould et al. 1989; Damlama and Tepper 1993). A number of nicotinic
receptor subunits are expressed by mesencephalic dopaminergic neurons
including a3, a4, a5, a7, b2, and b3 (Sorenson et al. 1998), and bath applica-
tion of nicotine produces an inward current and depolarization that exhibits
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Fig. 5A–E. The IPSP component of the subthalamic nucleus-evoked depolarizing post-
synaptic potential (DPSP) in some dopaminergic neurons is polysynaptic. Under
control conditions, subthalamic stimulation produced a DPSP with a reversal potential
of –38.8mV (A, E) indicating that it is composed of an EPSP and near simultaneous
IPSP. Addition of CNQX to the bath completely abolished both components of the
DPSP (B, E) indicating that the IPSP resulted from glutamate-dependent synaptic 
activation of an inhibitory neuron whose inputs and outputs remained intact in the
slice. After a 1-h wash, the DPSP returned and still exhibited a hyperpolarized 
reversal potential as before drug application (C, E). Subsequent application of bicu-
culline shifted the reversal potential in the positive direction to 12.6mV (D,E) showing
that the IPSP component of the DPSP was GABAA-mediated. Traces in A–D are each
the average of four single sweeps. (Reproduced from Iribe et al. 1999 with permission
of the publishers)
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desensitization with a time course of tens of seconds (Calabresi et al. 1989;
Sorenson et al. 1998). The response is sensitive to k-bungarotoxin but not a-
bungarotoxin and is thus more similar to the nicotinic response seen at peri-
pheral autonomic ganglia than at the neuromuscular junction (Calabresi et
al. 1989). In vivo, local or systemic administration of nicotine agonists produces
excitation of nigrostriatal (Lichtensteiger et al. 1982) and VTA dopami-
nergic neurons (Mereu et al. 1987) together with an increment in burst firing
of dopaminergic neurons (Grenhoff et al. 1986). It is interesting to note that
the increase in firing rate and increase in burst firing were only poorly cor-
related, suggesting a possible nicotinic effect on firing pattern independent of
its effect on firing rate (Grenhoff et al. 1986).

Dopaminergic neurons also express muscarinic receptors, and are depo-
larized by muscarinic agonists in vitro with a pharmacological profile resembl-
ing that of the M1 receptor, although the mechanism of the response appears
different from that of the classic m-current closure of potassium channels
(Lacey 1993). In addition to these postsynaptic actions, acetylcholine (ACh)
acts presynaptically in substantia nigra to inhibit release of GABA from
GABAergic afferents through an M3 receptor (Grillner et al. 2000).

Stimulation of the pedunculopontine nucleus in vivo produces mostly
excitation of dopaminergic neurons at short latencies ranging from 3 to 5ms
(Scarnati et al. 1984), consistent with the conduction time of cholinergic
neurons from the pedunculopontine nucleus to the substantia nigra (Futami
et al. 1995; Takakusaki et al. 1996). The EPSP that underlies the excitation
seen extracellularly in vivo is composed of both nicotinic and pirenzepine-
sensitive muscarinic components (Futami et al. 1995). Pedunculopontine 
stimulation also produces burst firing in nigral dopaminergic neurons in vivo
(Lokwan et al. 1999). The bursts observed were brief (averaging two spikes)
and occurred at extremely long latency (~100ms). As no antagonists were
tested, the transmitter and receptor underlying the evoked bursts remains to
be determined. The bursting could be glutamate-mediated as suggested by the
authors, cholinergic, or might depend on an interaction of the two transmitter
systems (e.g., Futami et al. 1995; Kitai et al. 1999).

IV. Monoaminergic Afferents

A projection from the dorsal raphé nucleus to the substantia nigra has been
described on the basis of anatomical, electrophysiological, and pharmacolog-
ical bases. Retrograde and anterograde tract tracing studies both reveal a 
significant input to substantia nigra and VTA from the dorsal raphé nucleus
(Fibiger and Miller 1977; Corvaja et al. 1993), and the ventral regions of the
substantia nigra and VTA are rich in serotonergic axons and boutons that
make asymmetric synapses onto both dopaminergic and non-dopaminergic
dendrites (Hervé et al. 1987; Mori et al. 1987; Corvaja et al. 1993). In early
studies, stimulation of the dorsal raphé was shown to inhibit the firing of 
both pars compacta (dopaminergic) and pars reticulata (non-dopaminergic)

20 M. Diana and J.M. Tepper



neurons in vivo (Dray et al. 1976; Fibiger and Miller 1977), effects that were
abolished by depletion of serotonin (Fibiger and Miller 1977). A later study
revealed more modest effects, with dorsal raphé stimulation exerting modest
inhibitory effects only on dopaminergic neurons firing at less than 4Hz;
more rapidly firing neurons were unaffected (Kelland et al. 1990b). 5-
Hydroxytryptamine (5HT)1A agonists exerted effects consistent with this,
leading at high doses to excitation of slowly firing cells without affecting more
rapidly firing neurons, while 5HT1B agonists were without effect (Kelland
et al. 1990b).

These inhibitory effects of serotonin are difficult to reconcile with the
asymmetric synapses made by dorsal raphé neurons on dopaminergic 
dendrites, which are usually associated with excitatory synaptic actions.
Furthermore, serotonin has been found to enhance the release of dopamine
from substantia nigra in vivo (Glowinski and Cheramy 1981) and the VTA in
vitro (Beart and McDonald 1982). In vitro, serotonin has been found to facil-
itate a dendritic calcium conductance (Nedergaard et al. 1988), and produces
a clear depolarization and excitation of substantia nigra dopaminergic neurons
(Nedergaard et al. 1991). These effects are mediated postsynaptically, but not
by 5HT1A or 5HT2 receptors. These data also seem inconsistent with a classical
inhibitory action of serotonin on mesencephalic dopaminergic neurons.

Perhaps some of the discrepancy can be resolved by data showing that
stimulation of the dorsal raphé with short trains of pulses reduces the dendritic
excitability of dopaminergic dendrites, as measured by somatodendritic 
invasion of antidromic spikes (Trent and Tepper 1991). The depression in 
dendritic excitability was unrelated to changes in the mean firing rate or to the
strength or duration of neostriatal-evoked inhibition.This effect was abolished
by depletion of serotonin with para-chlorophenylalanine for 3 days prior to
recording and could be reinstated by administration of 5 hydroxytryptophan
and was also blocked by systemic administration of the non-specific serotonin
antagonist, metergoline, indicating that it was serotonergic in nature. In addi-
tion, the depression in dendritic excitability could be, perhaps surprisingly, also
blocked by haloperidol.These data were interpreted to indicate that the raphé
inputs to nigral dopaminergic dendrites produced a local depolarization that
resulted in local release of dopamine that subsequently activated somatoden-
dritic autoreceptors which led to a local hyperpolarization of the dendrites and
a reduction in dendritic excitability, without grossly affecting the firing rate of
the neuron as a whole (Trent and Tepper 1991). This interpretation is consis-
tent with the asymmetric character and location of the serotonergic synapses
on the dopaminergic neurons, the previously observed increase in dopamine
release following serotonergic stimulation in substantia nigra and VTA, and 
the serotonergic facilitation of dendritic calcium entry, and it could account 
for the generally inconsistent and weak effect of serotonergic agonists and
dorsal raphé stimulation on dopaminergic neuron firing rate.

In addition, pars reticulata GABAergic neurons are excited by serotonin
via both pre- and postsynaptic mechanisms (Stanford and Lacey 1996). Given
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the feedforward inhibition of nigral dopaminergic neurons from pars 
reticulata (Hajos and Greenfield 1994;Tepper et al. 1995), the effects of 
serotonergic agonists and raphé input on dopaminergic neurons may also
depend to an extent on the ratio of the opposing effects of direct activation
of dopaminergic neurons and disynaptic input through pars reticulata, as 
well as on a balance between the action of serotonin on autoreceptors and 
different postsynaptic receptors.

Although not as well characterized nor as dense as the serotonergic input
from the dorsal raphé, some retrograde tracing studies reveal a modest pro-
jection from the locus coeruleus to the VTA (Phillipson 1979). Stimulation
of the locus coeruleus produces excitatory responses in dopaminergic neurons
recorded extracellularly in substantia nigra and VTA in vivo (Grenhoff et al.
1993). Although a1 adrenoceptor binding and message levels are extremely
low or non-detectable in the midbrain (Jones et al. 1985; Pieribone et al. 1994),
these responses were abolished by catecholamine depletion and were blocked
by prazosin, indicating that they were mediated by an a1 receptor. In vitro
recordings provided largely consistent results, showing that about 60% of 
mesencephalic dopaminergic neurons respond to a1 receptor stimulation with
a depolarization due to a potassium conductance decrease (Grenhoff et al.
1995). In addition, the a2 agonist clonidine has been reported to promote 
a regularization of firing pattern in both substantia nigra (Grenhoff and 
Svensson 1988) and VTA neurons (Grenhoff and Svensson 1989), most
likely by its presynaptic inhibitory effects on norepinephrine release.

E. Autoreceptor-Mediated Effects on 
Dopaminergic Neurons

I. Somatodendritic Autoreceptors

In 1973 Bunney and colleagues (Bunney et al. 1973a,b; Bunney and 
Aghajanian 1973; Aghajanian and Bunney 1973) published the first record-
ings from identified substantia nigra and VTA dopaminergic neurons. One 
of the key observations was that apomorphine, a direct-acting dopamine re-
ceptor agonist, potently inhibited dopaminergic neurons even when applied
iontophoretically (Aghajanian and Bunney 1977). This finding demonstrated
that dopaminergic neurons possessed receptors for their own transmitter,
dopamine, on their cell body and/or dendrites (somatodendritic region).These
receptors were termed somatodendritic autoreceptors, to distinguish them
from the axon terminal autoreceptors also expressed by dopaminergic neurons
that play a role in the local regulation of dopamine release and synthesis (for
review see Starke et al. 1989).

The earliest pharmacological characterization of dopamine somatoden-
dritic autoreceptors predated the current molecular biologically defined clas-
sification of dopamine receptors and indicated simply that they exhibited a
pharmacological profile distinct from either a or b adrenoceptors, i.e., that they
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were a unique type of dopamine receptor (Aghajanian and Bunney 1977).
When dopamine neurons were classified into D1 or D2 subtypes (Kebabian
and Calne 1979), it became clear, based on the sensitivity of the receptor to
haloperidol (Groves et al. 1975), a moderately selective D2 antagonist, that the
dopamine autoreceptor was a D2 receptor. This was later confirmed with the
use of highly selective D2 receptor agonists and antagonists in in vitro intra-
cellular recordings (Lacey et al. 1987, 1988; Lacey 1993) and receptor binding
(Morelli et al. 1988). With the advent of the widespread use of molecular 
biological methods to isolate and identify neurotransmitter receptors in the
last decade came the discovery that there are in fact two families of dopamine
receptors, D1 and D2. Within each family exist subtypes, D1 and D5 for the D1
family and D2 (both long and short isoforms), D3 and D4 for the D2 family
(see for review, Sibley and Monsma 1992). Although the most recent electro-
physiological data confirm that the autoreceptor is a member of the D2 
receptor family (Devoto et al. 1995), there remains some controversy as to
whether the autoreceptor is exclusively a D2 receptor, as suggested on the basis
of experiments with transgenic D2 (Mercuri et al. 1997) or D3 (Koeltzow
et al. 1998) knockout mice, or instead comprises both D2 and D3 receptors, as
suggested based on experiments localizing D3 message and/or protein to 
midbrain dopaminergic neurons (Tepper et al. 1997; Shafer and Levant 1998;
Stanwood et al. 2000) or electrophysiological experiments in rats after anti-
sense knockdown of dopamine D2 and/or D3 receptors (Tepper et al. 1997).
Using a very sensitive and specific polyclonal antibody raised against a syn-
thetic peptide reflecting the amino acid sequence of the third cytoplasmic loop
of the D3 receptor, Sokoloff and associates have recently reported that all rat
mesencephalic dopaminergic neurons express the D3 receptor (Diaz et al.
2000), which supports the notion that autoreceptors belong to both subclasses:
D2 and D3.

In any event, somatodendritic autoreceptor stimulation leads to an 
hyperpolarization of dopaminergic neurons that is caused by an increase in
conductance to potassium (Lacey et al. 1987, 1988). It is this hyperpolariza-
tion which can reach about 12mV in vitro in response to a maximal concen-
tration of quinpirole (Bowery et al. 1994) that is responsible for the inhibition
of spontaneous activity seen after local or systemic administration of autore-
ceptor agonists. The potassium channel linked to the dopamine autoreceptor
in situ appears to be the same one that is opened by activation of GABAB

receptors since the autoreceptor-mediated potassium current is reversibly
occluded by maximal stimulation of the GABAB receptor by baclofen (Lacey
et al. 1988).

The D2 somatodendritic autoreceptor is G-protein coupled and its func-
tion is disrupted by pertussis toxin (Innis and Aghajanian 1987; Shepard and
Connelly 1999). Although the specifics of the G-protein coupling to D2 or D3

autoreceptors is unknown at present, it appears to be independent of protein
kinase A or C pathways (Cathala and Paupardin-Tritsch 1999). Transfection
studies in MES-23.5, a dopaminergic neuroblastoma cell line in which D2

Electrophysiological Pharmacology of Mesencephalic Dopaminergic Neurons 23



receptor stimulation increases a potassium conductance, have revealed that
the D2S receptor is linked via a Gsa whereas the D2L is linked via a Goa (Liu
et al. 1999).

Although commonly termed the somatodendritic autoreceptor, the D2

autoreceptor may be preferentially located in the dendrites rather than the
soma or pericellular region. Although electron microscopic immunocyto-
chemistry revealed cellular D2 receptor labeling in substantia nigra and VTA,
the labeling of perikarya and large proximal dendrites was very weak com-
pared to that of dendrites (Sesack et al. 1994). Almost exactly the same dis-
tribution of labeling was seen for the autoreceptor potassium channel subunit,
Kir3.2 (Ianobe et al. 1999). Finally, in vivo extracellular recordings of dopami-
nergic neurons following local pressure injection of autoreceptor agonists
showed that the neurons were more effectively inhibited when the drugs were
applied several hundred micrometers distal to the recording site than when
applied right at the recording site which was most often presumably at or near
the soma (Akaoka et al. 1992). Thus, the somatodendritic autoreceptor may
be, in reality, principally expressed on the dendrites rather than the somata of
dopaminergic neurons.

II. Axon Terminal Autoreceptors

As mentioned above, the first dopamine autoreceptors to be discovered were
receptors located on the axon terminals of nigrostriatal fibers in slices of 
rat striatum (Farnebo and Hamberger 1971; for review see Starke et al. 1989).
When rat striatal slices were incubated with 3H-tyrosine and subjected to 
field electrical stimulation, radiolabeled dopamine was released. Addition of 
apomorphine to the bath significantly reduced the dopamine efflux. These 
data were correctly interpreted to mean that there existed a population of
dopamine receptors on or near the release sites on dopaminergic axons in the
dopamine terminal fields that served to inhibit the release of electrically
evoked dopamine. Subsequent studies showed that release evoked by depo-
larization of the slices by high potassium was also subject to autoreceptor reg-
ulation but that release elicited by agents that interfered with the dopamine
transporter, for example, amphetamine, was not subject to autoregulation
(Kamal et al. 1981). This turned out to be related to the calcium dependence
of the releasing stimuli. Release that is calcium dependent, such as that evoked
by electrical stimulation or high potassium, is subject to autoregulation,
whereas calcium-independent release (e.g., by amphetamine) (Arnold et al.
1977; Meyerhoff and Kant 1978) is not under autoreceptor control (Kamal
et al. 1981).

In addition to modulating the release of dopamine, dopamine terminal
autoreceptors can also modulate the synthesis of dopamine by altering the rate
of tyrosine hydroxylation (Walters and Roth1976; Roth et al. 1978). A 
thorough discussion of autoreceptor effects on dopamine synthesis is beyond
the scope of the present chapter and the reader is referred to Wolf and Roth
(1990) for a comprehensive review.
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The terminal autoreceptor appears similar or identical in all respects to
the somatodendritic autoreceptor. The axon terminal autoreceptor subtype is
D2 (Boyar and Altar 1987; Tepper et al. 1984a), and is a G-protein coupled
receptor sensitive to pertussis toxin (Bean et al. 1988). Stimulation of 
terminal autoreceptors in vivo produces an increase in the amount of current
needed to evoke an antidromic action potential, indicating that autoreceptor
activation is associated with a decrease in the excitability of the dopami-
nergic nerve terminals in the striatum (Groves et al. 1981; Tepper et al.
1984a,b, 1985), nucleus accumbens (Mereu et al. 1985), and cortex (Gariano
et al. 1989a). This is most likely due to an hyperpolarization of the terminal
similar to that seen at the cell body, and can be reversed by local application
of selective D2 receptor antagonists including sulpiride (Tepper et al. 1984a;
Tepper and Groves 1990). In addition, application of D2 antagonists by them-
selves results in an increase in the excitability of dopaminergic terminals 
indicating that the extracellular concentrations of dopamine in striatum,
nucleus accumbens, and cortex are high enough to cause at least partial occu-
pancy of the terminal autoreceptors in vivo (Tepper et al. 1984a,b; Mereu et
al. 1985; Gariano et al. 1989a). In addition, there have been two reports of
decreases in dopamine terminal excitability following D1 receptor agonist SKF
38393 local administration that could be partially reversed by the D1 selective
antagonist SCH 23390 (Diana et al. 1988, 1991a), But in view of the bulk of
in vivo and in vitro electrophysiological, receptor binding, and in situ
hybridization evidence it is unlikely that these effects reflect the presence of
D1 terminal autoreceptors.

III. Are D2 Autoreceptors Different from Other D2 Receptors?

It is often claimed that dopamine autoreceptors are “more sensitive” than
other, postsynaptic D2 receptors. One piece of evidence cited in support of 
this is the relatively low doses or concentrations of D2 agonists required to
inhibit dopaminergic neuron firing (in the range of 4–8 mg/kg, i.v. for apomor-
phine; Chiodo and Antelman 1980; Tepper et al. 1982), or to induce hyper-
polarization of dopaminergic neurons in vitro (ED50 for quinpirole: 77nM;
for apomorphine 205nm; Bowery et al. 1994). The doses of D2 antagonists
required to block the effects of dopamine or D2 agonists are similarly low;
the selective D2 antagonist, sulpiride shows an apparent Kd of 13nM for 
antagonizing the effects of the selective D2 agonist, quinpirole (Lacey et al.
1987). This is indeed sensitive, but it is difficult to find something against 
which to compare this, since even though many other central neurons express
postsynaptic D2 and/or D3 receptors, in most of them the receptor is not linked
to the opening of a ligand-gated potassium channel as it is in substantia 
nigra (Lacey et al. 1988), but rather acts to modify the kinetics or gating of
voltage gated channels (e.g., Surmeier et al. 1992, 1996; Surmeier and Kitai
1993). This difference creates problems when trying to compare the physio-
logical effects of stimulating the dopamine autoreceptor with other popula-
tions of D2 receptors.
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For example, in one study that is widely cited as evidence that the
dopamine autoreceptor is more sensitive than the postsynaptic D2 receptor,
the ability of iontophoretically applied dopamine or intravenously adminis-
tered apomorphine to inhibit the spontaneous activity of substantia nigra
dopaminergic neurons or striatal neurons was compared (Skirboll et al.
1979). In both cases the dopaminergic neurons were inhibited at much lower
doses of agonist than the striatal neurons. However, since the dopamine re-
ceptors are linked to different effectors in the two neuronal populations
(Lacey 1993; Surmeier and Kita 1993; Usiello et al. 2000), it is not valid to
compare the ability of drugs to inhibit the spontaneous firing of striatal 
and dopaminergic neurons, nor to use differences in their ED50 as evidence
that the autoreceptor is more sensitive than the postsynaptic D2 receptor
(Skirboll et al. 1979). Studies which conclude that the autoreceptor is the
same as the postsynaptic receptor from experiments comparing the ability of
dopamine agonists to inhibit dopamine release with their ability to inhibit ACh
release are similarly flawed (e.g., Helmreich et al. 1982).

However, there is at least one place in which postsynaptic D2 receptor 
signaling/linkage appears to be similar or identical to that in the dopami-
nergic neuron, and that is the lactotroph cells of the pituitary gland. Among
these cells, dopamine acts through a D2 receptor (Vallar and Meldolesi
1989) to open a potassium channel in concentrations as low as 100nM (Israel
et al. 1987), the same range as that required for activation of the autoreceptor
(Lacey 1993). Based on these data, it seems likely that when coupled to a
potassium conductance, the D2 autoreceptor and the D2 postsynaptic receptor
exhibit similar or identical sensitivities.

IV. Are Autoreceptors Ubiquitous Among Dopaminergic Neurons?

Although the majority of the studies of dopamine autoreceptor pharmacology
have been conducted in the nigrostriatal system, there have also been a large
number of studies focusing on the mesoaccumbens and mesocortical dopami-
nergic projections. Although there is unanimous agreement about the ex-
istence of somatodendritic and axon terminal autoreceptors on dopaminergic
neurons of the substantia nigra pars compacta, the situation has been more
controversial with respect to the dopaminergic neurons of the VTA. The 
controversy arose when it was found that the turnover of dopamine was 
significantly faster in the frontal cortex than in the striatum and that the syn-
thesis of dopamine in cortex appeared unaffected by apomorphine (Bannon
et al. 1981, 1982). It was concluded that these neurons lacked “synthesis-
modulating autoreceptors.” Similar results and conclusions were reported for
dopamine terminals in the amygdala, hypothalamus, and bed nucleus of the
stria terminalis (Kilts et al. 1987). Furthermore, a subsequent study reported
that iontophoretic application of dopamine failed to inhibit the spontaneous
activity of dopaminergic neurons projecting to the prefrontal or cingulate 
cortices, whereas neurons projecting to the striatum or piriform cortices were
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readily inhibited (Chiodo et al. 1984). In addition, the mean spontaneous firing
rates of the medial mesocortical dopaminergic neurons were reported to be
relatively high (mesoprefrontal: 9.3 ± 0.6Hz; mesocingulate: 5.9 ± 0.5Hz), and
the incidence of burst firing much higher than in nigrostriatal or mesopiriform
neurons (Chiodo et al. 1984). Thus, it was concluded that these neurons were
devoid of both “impulse-regulating somatodendritic and synthesis-modulating
nerve terminal autoreceptors,” although the possibility that these neurons
might still possess terminal autoreceptors that modulate dopamine release was
left open (Chiodo et al. 1984).

Subsequently, two groups reported that dopaminergic neurons that pro-
jected to prefrontal or cingulate cortex were inhibited by low “autoreceptor-
specific” doses of apomorphine (5–6 mg/kg) to the same extent as nigrostriatal
or meso-accumbens dopaminergic neurons (Shepard and German 1984;
Gariano et al. 1989a). Furthermore, these two studies reported that the meso-
cortical neurons also exhibited the same range of spontaneous firing rates as
nigrostriatal neurons (Shepard and German 1984; Gariano et al. 1989a),
results that agreed well with earlier studies of the electrophysiological prop-
erties of VTA dopaminergic neurons in which the projection targets were not
identified (e.g., Wang 1981a,b).

How can one resolve these discrepancies? It is possible that the electro-
physiological results of Chiodo et al. (1984) derive from a small subpopula-
tion of mesocortical dopaminergic neurons, located very close to the midline
which were not sampled in the other studies. It should be noted that the cell
bodies of origin of the nigrostriatal, mesolimbic, and mesocortical neurons
reported in Chiodo et al. (1984) showed a much more restricted localization
and projection topography with essentially no overlap than that reported by
others (see for example, Fallon and Laughlin 1995). Regardless, based on in
situ hybridization studies and D2 and/or D3 receptor autoradiography, the
dopaminergic neurons of origin of the nigrostriatal, mesolimbic, and meso-
cortical projections all express dopamine D2 and/or D3 mRNA and/or re-
ceptor protein (Morelli et al. 1988; Meador-Woodruff et al. 1989; Diaz
et al. 2000), indicating the ubiquitous expression of the D2 and/or D3 auto-
receptor on mesencephalic dopaminergic neurons. In vivo recording studies
clearly show evidence for the existence of D2-family somatodendritic auto-
receptors on VTA neurons projecting to prefrontal cortex (Shepard and
German 1984; Gariano et al. 1989b). Finally, retrograde tracing studies show
clearly that a number of neurons in the substantia nigra and VTA collateral-
ize to the striatum and cortical areas including prefrontal cortex (Fallon
1981). Although these results are in direct contradiction to those of Chiodo et
al. (1984), the bulk of the evidence points strongly towards the idea that most
or, more likely, all mesencephalic dopaminergic neurons express D2 and/or D3

somatodendritic autoreceptors.
What about nerve terminal autoreceptors? A large number of in vitro

experiments have consistently shown that stimulus-evoked release of
dopamine from all terminal regions, including prefrontal and cingulate 
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cortices (Plantje et al. 1985, 1987) is modulated by D2 and/or D3 nerve 
terminal autoreceptors (for review see Starke et al. 1989), although the sensi-
tivity of release to autoreceptor agonists and antagonists in cortex is some-
times reported to be less than in striatum (e.g., Cubeddu et al. 1990). In vivo
electrophysiological experiments of changes in the excitability of dopamine
nerve terminals in response to local infusion of D2 receptor agonists or antag-
onists or changes in impulse flow revealed that mesoprefrontal dopaminergic
neurons responded exactly as did nigrostriatal neurons, reinforcing the 
idea that these mesoprefrontal dopaminergic neurons also possessed nerve 
terminal autoreceptors (Tepper et al. 1984a,b; Gariano et al. 1989a; Tepper
and Groves 1990). It is still unclear why, if the cortical and mesolimbic
dopaminergic terminals possess autoreceptors as they appear to, dopamine
metabolism is different in the prefrontal cortex. One intriguing possibility is
that the much lower levels of tissue dopamine (Kilts et al. 1987) and dopamine
overflow (Abercrombie et al. 1989), coupled with the far fewer functional re-
uptake sites in these structures (e.g., Cass and Gerhardt 1995; Letchworth
et al. 2000) interact to blunt autoinhibition. Interestingly, recent studies in a
mouse mutant lacking the dopamine transporter show that interfering with
the transporter severely attenuates autoreceptor function (Jones et al. 1999),
although the mechanism for this is as yet unclear.

In any event, the bulk of the evidence now favors the conclusion that all
mesencephalic dopaminergic neurons express D2 and/or D3 dopamine auto-
receptors. Whether there are actually different “synthesis-modulating auto-
receptors,” “impulse-modulating autoreceptors,” and “release-modulating
autoreceptors” as proposed by some (see, for example, Kilts et al. 1987 or
Wolf and Roth 1990), or simply one autoreceptor (that may comprise both
D2 and D3 receptors) that serves different functions depending on its sub-
cellular location remains to be determined.

V. What Are the Physiological Roles of Autoreceptors?

The functional role of the axon terminal autoreceptor seems relatively clear.
By making it possible to modulate dopamine release (and synthesis) locally,
dopaminergic synaptic transmission can be fine-tuned to an extent simply not
possible by modulating impulse activity along the main axon when each axon
may give rise to several hundred thousand release sites (Tepper et al. 1987a).

But what of the somatodendritic autoreceptor? Among the earliest ideas
as to the physiological function of somatodendritic autoreceptors on dopami-
nergic neurons was the “self-inhibition” hypothesis of Groves and associates
(Groves et al. 1975). According to this hypothesis, dopamine released from
the dendrites of dopaminergic neurons activated somatodendritic auto-
receptors thereby participating in a local negative feedback regulation of the
electrophysiological and biochemical activity of the neurons. The self-
inhibition hypothesis was consistent with the slow firing rate of dopaminergic
neurons (Bunney et al. 1973a), the location of dopamine within dendrites of
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nigral dopaminergic neurons (e.g., Bjorklund and Lindvall 1975), and the
inhibitory effects of dopamine or dopamine receptor agonists on the spon-
taneous activity of dopaminergic neurons (e.g., Bunney et al. 1973a,b).
Furthermore, administration of dopamine receptor antagonists alone pro-
duced increases in the firing rate of dopaminergic neurons in vivo, suggesting
that the neurons were under a tonic inhibition mediated by dopamine
(Bunney and Aghajanian 1973; Bunney et al. 1973a,b). Since there are no
dopaminergic afferents to substantia nigra, and no local axon collaterals from
the dopaminergic neurons (Juraska et al. 1977; Wassef et al. 1981; Tepper
et al. 1987b), the source of the endogenously released dopamine was most
likely to be the dendrites of the dopamine neurons themselves.This hypothesis
was borne out by subsequent demonstration that depolarizing stimuli such as
high potassium (Geffen et al. 1976) as well as dopamine-releasing agents such
as amphetamine (Paden et al. 1976) elicited dopamine release from slices of
substantia nigra.

From the earliest extracellular recordings in vivo, midbrain dopaminergic
neurons were known to fire spontaneously at very low rates, rarely averaging
more than eight spikes per second for prolonged periods, and it was natural
to wonder if dopaminergic self-inhibition as originally proposed (Groves
et al. 1975) played a role in the slow firing and long post-spike refractoriness
seen in autocorrelograms (Wilson et al. 1977). The earliest intracellular
recordings from dopaminergic neurons revealed spontaneous action poten-
tials that were followed by large, long-lasting afterhyperpolarizations (Grace
and Bunney 1980, 1983a,b) that seemed consistent with this idea, and admin-
istration of haloperidol was shown to alter the pattern of firing of these
neurons in vivo, making the occurrence of shorter interspike intervals more
common, a result that could sometimes be observed in the absence of a change
in firing rate (Wilson et al. 1979). However, as described above, subsequent
electrophysiological studies revealed that the prolonged spike afterhyperpo-
larization and long interspike intervals were due largely to a calcium activated
potassium conductance (Kita et al. 1986; Shepard and Bunney 1988; Ping and
Shepard 1996), and not to dopamine. Interestingly enough, autoreceptor 
stimulation in dissociated dopaminergic neurons has been shown to reduce
calcium entry through w-conotoxin and w-AgaIVA-sensitive calcium channels
which leads to a reduction in the calcium-activated potassium current
(Cardozo and Bean 1995).

The dendritic tree of dopaminergic neurons is relatively sparse, but indi-
vidual dendrites often extend for distances of a millimeter or more (Juraska
et al. 1977; Tepper et al. 1987b; Hausser et al. 1995). One possible role for the
autoreceptor-mediated hyperpolarization/conductance increase is to respond
to dendritically released dopamine by attenuating or blocking the effects of
afferent input or intrinsic voltage-dependent conductances (e.g., Cardozo and
Bean 1995; Wilson and Callaway 2000) of a dendrite or dendritic segment
on which the autoreceptor is located. This type of action would be far more
subtle than the more generally assumed classical function whereby auto-
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receptors function to limit or regulate the overall activity of dopaminergic
neurons.

The classical idea of autoreceptor function derives from the many ex-
periments in which autoreceptor agonists, administered either systemically or
locally, have the effect of significantly hyperpolarizing the neuron and 
suppressing or completely inhibiting its spontaneous activity (Bunney et al.
1973a,b; Groves et al. 1975; Lacey et al. 1987). In these experimental situa-
tions, exogenous application of autoreceptor agonists or dopamine releasing
agents is likely to produce levels of autoreceptor occupancy that are signi-
ficantly greater than those that obtain in vivo under normal physiological 
conditions. Evidence in support of a more subtle and localized physiological
effect of somatodendritic autoreceptor activation comes from several lines of
evidence.

The electrophysiological response of dopaminergic neurons to autore-
ceptor antagonists exhibits certain vagaries. Although early studies showed
that systemic administration of chlorpromazine or haloperidol at low doses
(1.25mg/kg and 25–50mg/kg, i.v., respectively) to unanesthetized, immobilized
rats consistently produced large (approximately 100%) increases in the spon-
taneous firing rate (Bunney et al. 1973a,b; Wilson et al. 1979), this effect
appeared to be mediated, at least in part, through the striatum since striatal
lesions blunted or abolished the effect (Kondo and Iwatsubo 1980). In a recent 
re-examination of the effects of systemically administered haloperidol or
sulpiride on dopaminergic neuron activity, Pucak and Grace (1994) did not
find evidence of striatal involvement in the effects of autoreceptor antagonists,
as there were no large difference between the effects of these drugs in hemi-
transected and intact rats. On the other hand, only about 50% of the dopami-
nergic neurons in their study were excited at all by haloperidol, even at 
500mg/kg, and in the excited cells the mean increase in firing rate was rela-
tively modest, less than 20%. Although firing rate increases up to 56% were
seen after administration of 4mg/kg haloperidol, the significance of the
response to such extremely high doses is unclear.

When administered locally in substantia nigra, autoreceptor antagonists
(e.g. haloperidol) have been reported to be without effect (Bunney et al.
1973b; Lacey et al. 1990) or to cause large (Groves et al. 1975) or modest
(Pucak and Grace 1996) increases in firing of nigral dopaminergic neurons.
Although it is clear that general anesthetics can interfere with the response of
dopaminergic neurons to autoreceptor blockade (Mereu et al. 1984b), these
inconsistent and surprisingly modest effects of D2 receptor antagonists 
are hard to reconcile with the generally accepted idea that somatodendritic
autoreceptors play a significant role in modulating the firing rate of dopami-
nergic neurons under physiological conditions.

Furthermore, when the autoreceptors are partially or completely inacti-
vated by treatment with pertussis toxin or antisense knockdown, there are no
significant changes in the spontaneous firing rate or pattern of substantia nigra
dopaminergic neurons recorded in vivo (Innis and Aghajanian 1987; Tepper
et al. 1997; Shepard and Connelly 1999).
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Experiments in which somatodendritic autoreceptors are stimulated by
endogenous dopamine release by synaptic stimulation reveal changes in den-
dritic excitability with no significant alteration in mean firing rate (Trent and
Tepper 1991). The absence of a gross change in neuronal activity is likely due
to a more modest and localized activation of autoreceptors than is achieved
by application of exogenous drugs, and is consistent with the functional com-
partmentalization of the dopaminergic neuron into different electroresponsive
regions that may function independently (Grace 1990). Thus, somatodendritic
dopamine autoreceptors may serve as a mechanism for altering the excitabil-
ity and/or response of specific dendritic segments of a neuron in a local manner
in response to phasic afferent inputs, and in this way alter the way the neuron
integrates its afferent inputs in a subtle and graded fashion.

F. Miscellaneous Neuropharmacology
I. Gamma-Hydroxybutyric Acid

Gamma-hydroxybutyric acid (GHBA) is a normal constituent of the mam-
malian brain and has been proposed as a putative neurotransmitter and/or
neuromodulator (see Maitre et al. 2000 for a recent review). GHBA admin-
istration has been shown to modify neuronal activity of dopaminergic neurons
of the pars compacta in various ways. In chloral hydrate anesthetized rats,
GHBA inhibits impulse flow and this inhibition is blocked by the selective
GABAB antagonist, SCH 50911, but not by the selective GHBA-antagonist
NCS-382, suggesting an action on GABAB receptors (Erhardt et al. 1998).
On the other hand when administered in low doses to unanesthetized rats,
GHBA was found to increase the firing rate of pars compacta dopaminergic
neurons (Diana et al. 1991b) and to produce heterogeneous responses in 
non-dopaminergic pars reticulata cells (Diana et al. 1993b). Unfortunately, no
antagonism studies were performed, thus leaving open the possibility that
GHBA in low doses may act through GHBA receptors (see Maitre et al. 2000)
to produce excitation of pars compacta neurons and GABAB receptors to
produce inhibition and regularization of firing.

II. Glycine

Dopaminergic neurons respond to bath application of glycine in vitro with a
chloride-dependent membrane hyperpolarization.This response is sensitive to
strychnine and insensitive to bicuculline or picrotoxin, indicating that it is
mediated by a glycine-specific receptor (Mercuri et al. 1990). The source of
the glycinergic input is unknown, and could originate in as yet unidentified
nigral interneurons and/or from the brainstem (McGeer et al. 1987).

III. Neuropeptides

Cholecystokinin-8 (CCK-8) is the carboxyterminal octapeptide of the peptide
cholecystokinin, and is found in some dopaminergic neurons in rat VTA and
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substantia nigra (Skirboll et al. 1981; Kalivas 1993). CCK is co-released with
dopamine from dopaminergic dendrites (Freeman et al. 1991), and when
administered systemically in vivo or locally in vitro, CCK-8 excites dopaminer-
gic neurons. In vivo, CCK-8 increases firing rate and burst firing (Skirboll et al.
1981; Freeman and Bunney 1987). Thus, dopaminergic neurons may be con-
sidered to express a second class of autoreceptor, a CCK autoreceptor that 
acts to facilitate rather than depress the excitability of the neuron. In vitro
studies in dissociated dopaminergic nigral neurons show that CCK-8 acts
through CCK-A receptors to activate an inward G-protein coupled current.
The current was insensitive to pertussis toxin but was abolished by intra-
cellular heparin or calcium chelators, suggesting that it is mediated by 
IP3-induced calcium release (Wu and Wang 1994). However, in addition to 
its excitatory effects, CCK also appears to potentiate the inhibitory effects 
of dopamine autoreceptor stimulation through an unknown mechanism
(Hommer and Skirboll 1983; Freeman and Bunney 1987; Kalivas 1993), so the
physiological significance of CCK release in substantia nigra remains to be
determined.

Neurotensin and the related peptide, neuromedin N are also present in
dopaminergic neurons in rat mesencephalic dopaminergic neurons, some of
which also contain CCK. These neurons also express neurotensin receptors.
In addition, neurotensin is contained in afferents to the substantia nigra and
VTA. Similar to CCK, application of neurotensin in vivo or in vitro leads to
increased firing rates of dopaminergic neurons (see Kalivas 1993 for review).
Part of this excitatory effect is due to the opening of a G-protein coupled non-
selective inward cation conductance (Chien et al. 1996). However, neurotensin
also affects autoreceptor responses, but in contrast to CCK, neurotensin atten-
uates the effects of dopamine autoreceptor agonists (Werkman et al. 2000)
and does so by acting to close the same potassium conductance that is opened
by dopamine autoreceptor and GABAB receptor agonists (Lacey et al. 1988;
Farkas et al. 1997).

Despite being contained in striatonigral neurons that synapse on
dopaminergic neurons in substantia nigra (Mahalik 1988), substance P has
little or no effect when applied locally to substantia nigra dopaminergic
neurons (Collingridge and Davies 1982; Pinnock and Dray 1982), presum-
ably because levels of substance P receptor binding are low or undetectable
in substantia nigra (Rothman et al. 1984). On the other hand, iontophoretic
application of substance K or kassinin excites dopaminergic and non-
dopaminergic nigral neurons in vivo (Innis et al. 1985), and senktide, a selec-
tive selective neurokinin NK3 receptor agonist excites dopaminergic neurons
in vitro (Keegan et al. 1992).The source and identity of the endogenous ligand
is unclear, although nigral levels of both substance P and substance K decrease
following excitotoxic lesions of striatum (Arai et al. 1985). Since essentially
all electrophysiological changes in nigral neurons following striatal stimula-
tion appear to be due to GABA release, the physiological significance of these
tachykinin effects is unclear at present.
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G. Acute and Chronic Effects of Antipsychotics on
Dopaminergic Neurons

I. Differences Between Effects of Typical and 
Atypical Antipsychotics

As discussed above, acute systemic administration of antipsychotics increases
the activity of dopaminergic neurons in the different subdivisions of the mid-
brain. One potentially important difference that is apparent between A9 and
A10 neurons is the response to “atypical” antipsychotics of which clozapine
represents the prototype. These neuroleptics are distinguished from the
“typical” antipsychotics because they have a much lower incidence of induc-
ing extrapyramidal side effects (see Meltzer et al. 1999 for a recent review)
and thus represent a pharmacological class with enormous clinical potential.
One widely accepted hypothesis for the lack of extrapyramidal side effects
from the atypical antipsychotics has been that the former have a preferential
site of action in the mesolimbic and/or mesocortical dopaminergic system.
Early in vivo recording studies following acute administration showed that
these compounds increased the firing rate selectively in the A10 region without
affecting neuronal activity in A9, whereas their chronic administration led 
to a reduction in the proportion of spontaneously active neurons as indexed
by the cells per track ratio (see below) solely in A10 (Chiodo and Bunney
1983; White and Wang 1983). Subsequent studies suggested a possible differ-
ence in interaction of the atypical antipsychotics with autoreceptors in A9 and
A10 (e.g., Stockton and Rasmussen 1996). On the other hand, in vitro studies
generally have not revealed a differential response of A9 and A10 neurons 
to typical and atypical antipsychotics (e.g., Suppes and Pinnock 1987; Bowery
et al. 1994) and a recent in vivo study showed that intravenous administration
of clozapine increased the firing rate of nigrostriatal dopaminergic neurons to
the same extent as seen in VTA neurons, but only in unanesthetized rats
(Melis et al. 1998). Thus, it is not yet clear that there is a preferential site of
action of atypical antipsychotics for the mesolimbic versus nigrostriatal
system, at least as far as autoreceptor blockade goes, nor what the pharmaco-
logical basis of such a preference might be. Alternative explanations include,
for example, differences between the two classes of antipsychotics with respect
to interaction with alpha2 adrenergic receptors (Hertel et al. 1999), a rela-
tively more potent blockade of 5HT2A receptors coupled with a weak block-
ade of D2 receptors (Meltzer et al. 1989, 1999), or a combination of properties
(Kinon and Lieberman 1996), which may be the substrate for the differential
incidence of extrapyramidal side effects resulting from chronic treatment with
typical and atypical neuroleptics.
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II. Effects of Chronic Antipsychotic Drug Administration – 
The Depolarization Block Hypothesis

While the acute administration of dopamine receptor antagonists leads 
to increased spontaneous firing of dopaminergic neurons (Bunney and 
Aghajanian 1973; Groves et al. 1975; Wang 1981b), chronic administration of
antipsychotics has been suggested to reduce dopaminergic synaptic transmis-
sion not only by blocking postsynaptic dopamine receptors, but by a relatively
novel mechanism in which a state of chronic depolarization of dopaminergic
neurons is induced which, over time, renders a population of neurons unable
to fire action potentials thereby reducing the population of spontaneously
active dopaminergic neurons. This phenomenon was termed depolarization
block (Bunney and Grace 1978) and was measured experimentally by count-
ing the number of neurons displaying the characteristics of dopaminergic
neurons encountered while lowering an extracellular recording electrode
through the region of the substantia nigra and/or VTA. Following chronic, but
not acute antipsychotic treatment, the mean number of presumed dopami-
nergic neurons encountered per electrode track was found to be less than in
controls. Iontophoresis of GABA or dopamine which would be expected to
hyperpolarize the neurons reversed these effects. It was therefore proposed
that the reduction in the number of cells encountered per track following
chronic antipsychotic drug administration was a result of depolarization 
inactivation of the neurons (Bunney and Grace 1978).

Considerable interest in this theory arose quickly as it provided the first
compelling explanation of why the antipsychotic effects of neuroleptics usually
take weeks to develop, despite the fact that the blockade of dopamine re-
ceptors occurs immediately upon drug administration. Subsequently, numer-
ous reports consistent with the initial phenomenological description emerged
(e.g., Chiodo and Bunney 1983; White and Wang 1983; Skarsfeldt 1988,
1995).With additional evidence from intracellular and extracellular recordings
consistent with the existence of depolarized dopaminergic neurons in animals
chronically treated with neuroleptics (Grace and Bunney 1986), the depolar-
ization block theory gained widespread, although not universal (see Mereu
et al. 1994, 1995), acceptance as the principal mechanism by which neurolep-
tics exert their clinically therapeutic antipsychotic action. The phenomenon
appears to be fully reversible, as after withdrawal for 8–14 days after up to 
14 months of chronic treatment with haloperidol there are no longer any
changes in the number of cells per track or in any other measures of dopamin-
ergic neuron activity compared to controls (Chiodo and Bunney 1987;
Gariano et al. 1990). The actual substrates of the depolarization inactivation
are not known, although it appears that intact afferent input from the fore-
brain is essential for the development and maintenance of the phenomenon
(see Grace et al. 1997 for review).

There are actually two separate issues to consider with respect to the role
of depolarization block in the clinical response to chronic administration of
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antipsychotic drugs. The first is whether depolarization block actually occurs
in dopaminergic neurons in animals and/or humans chronically treated with
neuroleptic drugs. The second is whether depolarization inactivation (assum-
ing it occurs) accounts for the therapeutic action of antipsychotic drugs.

Much of the evidence for the existence of depolarization block relies on
measurements of cells per track data described above. While drug-induced
changes in the number of cells per track might well indicate changes in the
proportion of spontaneously active neurons, alternative explanations have
been proposed including changes in firing rate and/or changes in the extent to
which the action potential invades the dendrites thereby altering the size of
the extracellular field potential of the neuron. Both of these would alter the
probability of encountering a neuron while lowering a microelectrode through
a designated region of the brain (see discussions in Diana et al. 1995a and Dai
and Tepper 1998). For example, a reduction in the number of dopaminergic
cells per track was observed after chronic ethanol administration and sub-
sequent withdrawal and attributed to a reduced number of spontaneously
active neurons due to depolarization block (Shen and Chiodo 1993). Sub-
sequent experiments (Diana et al. 1995a), however, revealed that during with-
drawal, dopaminergic neurons exhibited reduced spontaneous activity (i.e.
lower firing rates and burst firing) which could account for more difficult
detection and hence a lower number of cells per track even though the
neurons were not in depolarization block as evidenced by their slow sponta-
neous activity and the inability of apomorphine to increase the number of cells
per track.Thus, although an interesting and potentially valuable tool, the inter-
pretation of changes in the number of cells per track is complex and may be
due to factors other than or in addition to a change in the number of sponta-
neously active neurons.

As to the second issue, although able to replicate the reduction in cells per
track following chronic dopamine antagonists in anesthetized rats, Mereu et al.
(1994, 1995) found no reduction in the number of cells per track in locally 
anesthetized, immobilized, and artificially respired rats. These authors argued
that the appearance of depolarization block is an artifact of some type of inter-
action between general anesthetics and the neuroleptics, and hence is unlikely
to account for the therapeutic effects of neuroleptics in (unanesthetized)
humans. In addition, some predictions of the depolarization block hypothesis,
for example the expected reduction in extracellular dopamine levels in striatal
and/or cortical terminal fields following chronic neuroleptic treatment, have
been difficult to demonstrate experimentally (e.g., Hernandez and Hoebel
1989; Zhang et al. 1989; Hollerman et al. 1992; Moghaddam and Bunney 1993
but see also Moore et al. 1998). Furthermore, manipulations that increase
dopaminergic neuron firing and dopamine release in normal animals also
increase extracellular dopamine levels after chronic haloperidol treatment,
although the hypothesis would seem to predict that dopaminergic neurons in
depolarization block should be unable to respond to excitatory stimuli with an
increase in firing rate and dopamine release (Klitenick et al. 1996).
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In conclusion, although there is electrophysiological evidence in support
of the development of depolarization block in dopaminergic neurons follow-
ing chronic neuroleptic treatment, some of these data, particularly the 
cells per track data, are open to alternative interpretations. In addition, the
apparent dependency of the development of depolarization inactivation on
anesthetic state or other aspects of the experimental preparation, coupled with
the inability of a number of experiments to demonstrate the expected decrease
in extracellular dopamine levels following chronic neuroleptic treatment,
point toward the need for more research before a definitive conclusion 
about the role of depolarization inactivation in the therapeutic effects of 
neuroleptics can be reached.

H. Dopaminergic Neurons and Drugs of Abuse:
Acute and Chronic Studies

I. Acute Effects of Drugs of Abuse on Dopaminergic Neurons

Dopaminergic systems of the mammalian brain are a major target of drugs of
abuse and represent cellular systems which are considered crucial in convey-
ing affect-related effects of various addicting drugs. Thus, dopaminergic
neurons have been extensively studied in recent years and much is now known
about their response to administration of drugs of abuse (White 1996; Diana
1998; Pulvirenti and Diana 2001).

In vivo, drugs as structurally and pharmacologically diverse as ethanol
(Gessa et al. 1985), nicotine (Lichtensteiger et al. 1982; Grenhoff et al. 1986;
Mereu et al. 1987), morphine (Iwatsubo and Clouet 1977; Gysling and Wang
1983; Matthews and German 1984) and cannabinoids (French 1997; French
et al. 1997; Gessa et al. 1998) increase the firing rate and bursting activity of
mesencephalic dopaminergic neurons, resulting in augmented dopamine
outflow in terminal areas when acutely administered (Di Chiara and 
Imperato 1988). In contrast, psychostimulants such as amphetamine and
cocaine decrease dopaminergic neuronal activity, principally through indirect
actions at the somatodendritic autoreceptor (Bunney et al. 1973a,b; Groves
et al. 1975; Einhorn et al. 1988), although their effects on dopamine outflow
in terminal regions are not dissimilar from other addicting compounds, i.e.,
they promote an increase in extracellular dopamine levels by blocking and/or
reversing the dopamine uptake transporter (Kuczenksi 1983).

In vitro recordings have provided useful insights into the cellular mecha-
nisms which lead to the excitation of dopaminergic neurons after acute admin-
istration of drugs of abuse. Morphine does not act directly on dopaminergic
neurons which lack m-opioid receptors, but rather acts on m-opioid receptors
located on pars reticulata GABAergic neurons producing a potassium-
mediated hyperpolarization, which in turn, leads to a depolarization and con-
sequent excitation of dopaminergic neurons through disinhibition (Lacey
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et al. 1989; Johnson and North 1992; Kalivas 1993). Although the pars 
reticulata neuron mediating the disinhibitory effect of m-opioids has not been
conclusively identified and could be an interneuron (Johnson and North
1992), other anatomical and electrophysiological studies have demonstrated
that nigrothalamic and nigrotectal neurons exhibit the requisite synaptic
arrangement to underlie the disinhibitory effect (Hajos and Greenfield 1994;
Tepper et al. 1995, 2000).

A similar mechanism was proposed for the action of ethanol when it was
demonstrated that the excitation of dopaminergic neurons induced by ethanol
(Mereu et al. 1984a; Gessa et al. 1985) was accompanied by a reduction in
pars reticulata non-dopaminergic neuronal activity (Mereu and Gessa 1985)
of similar proportions. However, this is unlikely to be the sole mechanism of
action of ethanol on dopaminergic neurons, since ethanol activates dopamine-
containing cells even when these are mechanically dissociated or studied in
slices (Brodie et al. 1999a,b; Brodie and Appel 1998), and ethanol has been
shown to have direct effects on the calcium-dependent potassium current in
dopaminergic neurons. (Brodie and Appel 1998; Brodie et al. 1999a,b).

Nicotine has been reported to activate dopaminergic neurons in vivo
(Lichtensteiger et al. 1982; Grenhoff et al. 1986; Mereu et al. 1987) and in
vitro (Calabresi et al. 1989; Pidoplichko et al. 1997), but in contrast to ethanol
and opiates, its action is mediated by a direct action on nicotinic receptors
located on dopaminergic neurons. Most of the nicotine-induced inward
current in dopaminergic neurons is carried by b2-subunit-containing receptors
with a minor component contributed by a7 subunit-containing receptors, and
even when exposed to concentrations of nicotine found in the blood of
smokers, exhibits rapid desensitization (Pidoplichko et al. 1997; Dani et al.
2000).

Among various classes of drugs of abuse, cannabinoids rank high in the
list especially in terms of spread of their use and recently have received 
much attention possibly owing to their social popularity. The actions of D9-
tetrahydrocannabinol (THC), the active principle of marijuana, and its syn-
thetic analogues have been recently described in central dopaminergic
systems. After acute administration, dopamine outflow is increased in the
nucleus accumbens (Gardner and Lowinson 1991) and prefrontal cortex
(Chen et al. 1990) while dopaminergic neuronal activity in anesthetized rats
is increased in the VTA and substantia nigra (French 1997; French et al. 1997)
by an action on CB1 receptors. In unanesthetized rats, cannabinoids similarly
activate mesolimbic (Gessa et al. 1998) and mesoprefrontal dopaminergic
neurons (Diana et al. 1998b) by a selective action on CB1 receptors. Although
there is general agreement about the systems level effects of CB1 stimulation
on dopaminergic systems (but see Gifford et al. 1997), their cellular site(s) of
action remain controversial. Autoradiographic studies combined with 6-
OHDA lesions of the ascending dopaminergic pathways have indicated that
CB1 receptors are not expressed by dopaminergic neurons (Herkenham et al.
1991) while these receptors have been detected in high amounts on pars 
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reticulata GABAergic neurons and on the terminals of striatonigral projec-
tion neurons in substantia nigra (Herkenham et al. 1991). The existence of
CB1 receptors on pars reticulata GABAergic neurons coupled with the results
of in vivo microdialysis studies in the shell of the nucleus accumbens has led
to the suggestion that cannabinoids may increase dopaminergic transmission
by acting through m-opioid receptors in a disinhibitory fashion (Tanda et al.
1997) similar to that described above for opioids. However, such a mechanism
seems incompatible with direct experimental evidence that shows that
cannabinoid agonists increase rather than decrease pars reticulata neuronal
activity (Tersigni and Rosenberg 1996; Miller and Walker 1995; see Melis
et al. 2000 for discussion on this point) and that the cannabinoid-induced 
stimulation of firing rate of dopaminergic neurons is not antagonized by nalox-
one (French 1997; Melis et al. 2000).Thus, at present, the cellular site of action
for cannabinoid-induced increase of dopaminergic neuronal activity remains
to be determined.

II. Chronic Effects of Drugs of Abuse on Dopaminergic Neurons

While studies of the acute effects of drug of abuse on dopaminergic neurons
are extremely informative to identify primary sites of actions of addicting com-
pounds, they are less helpful when trying to understand the general phenom-
enon of drug addiction. Drug addiction is induced by chronic administration
of various substances and is now widely accepted as an example of drug-
induced alterations in neuronal plasticity (Nestler 1993; Diana 1996, 1998;
Pulvirenti and Diana 2001). Thus, the study of the activity of dopaminergic
neurons after chronic administration of drugs of abuse is considered more 
pertinent and relevant in the context of drug dependence.

Chronic administration of psychostimulants such as cocaine and amphet-
amine have been shown to affect mesolimbic dopaminergic neurons at various
levels (Henry et al. 1989; Ackerman and White 1990; White et al. 1995; White
1996). Firing rate appears to be higher in rats chronically treated with cocaine
(Zhang et al. 1992a), perhaps due to the reduced sensitivity of somatoden-
dritic autoreceptors (Ackerman and White 1990; Zhang et al. 1992a),
although administration regimen seems to be an important factor as it could
affect differently A9 and A10 neurons (Gao et al. 1998). Chronic treatment
with amphetamine leads to a reduction in the sensitivity of dopaminergic
neurons to autoreceptor-mediated inhibition by apomorphine or ampheta-
mine in a dose-dependent manner (Kamata and Rebec 1983, 1984a,b).
Further, an increased sensitivity to iontophoretically applied glutamate, which
could push the cells to an apparent depolarization block (Zhang et al. 1997),
has been described after both cocaine and amphetamine, although it is unclear
if these effects are related to the chronic regimen with cocaine and/or amphet-
amine or to their withdrawal, as investigations were carried out at variable
lengths of time after last drug administration (for review see White 1996). In
addition, chronic amphetamine treatment affects dopaminergic neurons not
only at the soma but also at the level of the synaptic endings. The ability of
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amphetamine to induce a decrease in striatal dopamine terminal excitability
(Tepper et al. 1984a) is blunted or eliminated in animals following 2 weeks of
treatment with amphetamine (Garcia-Munoz et al. 1996).

Morphine, when administered repeatedly, also produces a number of
effects on the mesolimbic dopaminergic system. The firing rate of dopaminer-
gic neurons is within control values 2h after the last morphine administration,
but firing rate and burst firing are drastically reduced when the opiate antag-
onist, naloxone, is administered at this time (Diana et al. 1995b). Further, the
relative refractory period is consistently prolonged, supporting an increased
refractoriness of the dopaminergic neuron in generating action potentials
(Diana et al. 1995b). In addition, dopaminergic cell bodies appear to “shrink”
(Sklair-Tavron et al. 1996) after chronic morphine administration, an effect
consistent with the prolongation of refractory periods of these units (Diana
et al. 1995b,c; Diana 1996) although is unclear if the reduction in cell body
size is induced by chronic morphine or by its withdrawal. These effects, in any
event, all point to a vulnerability of the mesolimbic dopaminergic system after
chronic administration of morphine.

Ethanol, when chronically administered, has been shown to increase the
basal activity of dopaminergic neurons projecting to the nucleus accumbens
and no tolerance seems to develop (Diana et al. 1992) to its stimulating prop-
erties on dopaminergic neurons (Gessa et al. 1985). Chronically administered
nicotine, on the other hand, appears to affect dopaminergic neurons differ-
ently. In vitro studies have shown that the stimulating properties of nicotine
upon dopaminergic neurons are rapidly lost after repeated exposure due to
desensitization of nicotinic receptors present in the somatic region of
dopaminergic neurons and helping in explaining acute tolerance to nicotine’s
rewarding effects (Pidoplichko et al. 1997).

Another commonly abused drug is D9-THC, the active principle of mari-
juana. Its actions on dopaminergic neurons have been recently elucidated 
and are similar from those reported above for other drugs, at least in terms of
neuronal activity, in spite of the fact that cannabinoids are frequently consid-
ered only mildly addicting (Grinspoon and Bakalar 1997). Chronic adminis-
tration of D9-THC alters dopaminergic neuronal functioning in the limbic
system in a way similar to that reported for morphine, and tolerance to the
stimulating properties of D9-THC seems to develop only in A9 but not in A10
neurons (Wu and French 2000). Firing rate and burstiness are reduced after
chronic exposure and are further reduced if the selective antagonist SR
1417116 A is administered (Diana et al. 1998a). In contrast, overt behavioral
signs of withdrawal are evident only in rats in which the selective antagonist,
SR 141716 A, was administered, suggesting that the lack of withdrawal 
symptoms might be due to the presence of residual D9-THC, which would
counteract abstinence signs.This fact may also help in explaining why cannabi-
noids are traditionally considered devoid of withdrawal signs (Grinspoon and
Bakalar 1997).

In conclusion, while acute administration of addicting drugs stimulates 
the activity of dopaminergic neurons and in particular the mesolimbic system,
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chronic administration alters neuronal functioning in various ways which indi-
cate the mesolimbic dopaminergic pathway as a major target in the actions of
chronic administration of addicting drugs, and provide the rationale for drug
addiction viewed as an example of drug-induced alterations in neuronal 
plasticity (Koob and Bloom 1988; Nestler 1992, 1993, 2001; Diana 1996,
1998; Koob and Le Moal 1997; Pulvirenti and Diana 2001).

III. Withdrawal Following Chronic Administration

While repeated administration forms the basis of neurobiological changes
induced by drugs of abuse, withdrawal is often a time-window which reveals
enduring effects produced by the continued exposure. Indeed, drug-with-
drawal offers the unique opportunity to study neurobiological alterations
induced by chronic administration of addicting drugs in a drug-free condition,
in which the abused substance may act as a potential confounding factor. It is
often very difficult to discriminate between effects induced by the drug, when
chronically administered, or by its absence after chronic administration. Thus,
it is advisable to carefully discriminate between effects induced by drugs 
themselves and effects induced by their absence since interpretations are often
opposite (Diana 1996; Sklair-Tavron et al. 1996; Diana et al. 1999).

The effect of withdrawal from various addicting drugs has recently been
described in dopaminergic neurons. Ethanol withdrawal reduces the sponta-
neous activity (firing rate and burstiness) of dopaminergic neurons projecting
to the nucleus accumbens, in rats in vivo (Diana et al. 1993a) and in mice in
vitro (Bailey et al. 1998), and these effects are accompanied by an elongation
of refractory periods and a reduction of dopamine dialysate in the nucleus
accumbens (Fig. 6) (Diana et al. 1993a). The reduction in neuronal activity
does not seem to be due to the depolarization block proposed for cocaine
withdrawal (Ackerman and White 1990, 1992) as it persists in rats anes-
thetized with chloral hydrate which show the same sensitivity to apomorphine
as unanesthetized rats (Diana et al. 1995a, but see Shen and Chiodo 1993).
Further, hypofunctioning of dopaminergic neurons outlasts the behavioral
manifestations of withdrawal, suggesting a role for dopaminergic neurons in
subtle but reproducible and enduring modifications in cell physiology un-
related to somatic withdrawal but more closely linked to longer lasting
changes occurring after ethanol withdrawal (Diana 1996, 1998).

Morphine withdrawal also produces a depression in firing rate and burst
firing in dopaminergic neurons with no evidence of depolarization block
(Diana et al. 1995b). These data are consistent with the hyperpolarization due
to an increased GABA release seen in dopaminergic neurons in vitro during
acute morphine withdrawal (Bonci and Williams 1997). In addition, morphine
withdrawal produces a reduction in glutamatergic EPSCs in VTA dopamin-
ergic neurons due to reduced glutamate release (Manzoni and Williams
1999). Furthermore, as in the case of ethanol, the reduction of dopaminergic
activity after opiate withdrawal persists for 14 days, while behavioral measures
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of abstinence are within control values at 3 days (Diana et al. 1999). Once
again, these results would suggest that hypofunction of the mesolimbic
dopaminergic system is related to the long-term consequences of chronic
opiate abuse and not to behavioral signs of withdrawal (but see Harris and
Aston-Jones 1994). Furthermore, administration of morphine to rats with a
history of morphine addiction results in an activation of dopaminergic firing
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Fig. 6. Extracellular electrophysiological properties of mesolimbic dopaminergic
neurons projecting to the nucleus accumbens in vivo after withdrawal from chronic
administration of ethanol (eth), morphine (morph), and D9-THC (thc) spontaneous 
(S-W ) and pharmacologically precipitated (P-W ). Note the parallel decline in firing
rate (top) and bursting activity (bottom) irrespective of the substance administered.
Due to the different baseline activity in treated and control rats, number of bursts is
expressed as bursts per second. See details in Diana et al. (1995c) and Diana (1998)



rate far greater than that observed in saline-treated counterparts (Diana
et al. 1999). This suggests that although dopaminergic neurons have returned
to apparent normality (extracellular electrophysiological indices are within
control values), the mesolimbic dopamine system remains hyper-responsive
(i.e., vulnerable) to opiates even longer, with profound implications for the
phenomenon of relapse into opiate addiction in humans. Nicotine, the princi-
pal constituent of tobacco, seems to produce different effects upon discon-
tinuation of chronic exposure (Rasmussen and Czachura 1995), at least in
vivo. Indeed, chronic administration seems to produce a reduction of firing
rate in the A10 region but not in the A9, whereas withdrawal restored control
firing rates in A10 and increased above control in A9 (Rasmussen and
Czachura 1995). Although stimulating, these results are flawed by the lack 
of antidromic identification of the neurons, which hampers firm conclusions
on the regional selectivity of the effects observed, and thus we await confir-
mation in light of contrasting results obtained in vitro (Pidoplichko et al. 1997)
and in vivo with the microdialysis method (Carboni et al. 2000).

Cannabis derivatives have long been seen as only mildly addicting and
consequently as devoid of withdrawal manifestations. Recently, however, with
the advent of appropriate pharmacological tools, it has been possible to
demonstrate behavioral manifestations of cannabinoid withdrawal (Aceto et
al. 1995, 1996; Tsou et al. 1995). On this basis we investigated the possibility
that chronic treatment with D9-THC affects the function of the mesolimbic
dopamine system. We found that both withdrawal conditions (spontaneous
and pharmacologically precipitated) reduced the firing rate of dopaminergic
neurons projecting to the nucleus accumbens with behavioral manifestations
of withdrawal evident only in the pharmacologically precipitated withdrawal
group (Diana et al. 1998a). These facts suggest that hypofunction of the
dopaminergic mesolimbic system may participate in the neurobiological basis
of long-term consequences of cannabinoid dependence, allowing us to extend
this conclusion to the general phenomenon irrespective of the chemical class
abused and further suggest that the failure to observe behavioral signs of
cannabinoid withdrawal could be due to high lipophilicity of cannabinoids,
which hampered observation of an abrupt somatic withdrawal (Diana et al.
1998a).

I. Conclusions
In the last decade, electrophysiological studies have added significantly to our
knowledge of the physiological activity and pharmacological responsiveness
of dopaminergic neurons. Many of the intrinsic mechanisms that lead to action
potential generation and the generation of different firing patterns, both under
normal physiological conditions and after various pharmacological manipula-
tions, have been described. Considerable advances have been made in under-
standing the pathways, neurotransmitters, and receptors that form the
substrates for the afferent regulation of central dopaminergic systems.
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These central dopaminergic systems have been demonstrated to be a
major target for many psychotropic drugs including psychotherapeutic
antipsychotics and drugs of abuse. Dopaminergic systems play a role in the
response to drugs of abuse not only when administered acutely but, perhaps
more importantly, following chronic administration and withdrawal. Under
withdrawal, regardless of the specific drug, there is a depression in the spon-
taneous activity and burst firing of dopaminergic neurons projecting to the
nucleus accumbens. This “hypodopaminergia” outlasts the behavioral signs of
withdrawal and suggests that dopaminergic systems play an important role 
in the long-term consequences of prolonged drug intake and provides an
example of drug-induced alterations in neuronal plasticity affecting the
mesolimbic dopaminergic system. Identification of the etiological factors
leading to the abnormal cellular physiology following chronic administration
of, and withdrawal from, addictive drugs may pave the way for future phar-
macological treatments of drug addiction.
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