CEREBELLAR-RESPONSIVE NEURONS IN THE THALAMIC VENTROANTERIOR-VENTROLATERAL COMPLEX OF RATS: IN VIVO ELECTROPHYSIOLOGY

S. F. SAYWER,* S. J. YOUNG,† P. M. GROVES‡ and J. M. TEPPER§

*Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Medical Center Boulevard, Winston-Salem, N.C. 27157, U.S.A.
†Department of Psychiatry, School of Medicine, University of California at San Diego, La Jolla, CA 92037, U.S.A.
‡Center for Molecular and Behavioral Neuroscience, Ackerman Research Center, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, U.S.A.

Abstract—In vivo intracellular recordings were obtained from identified thalamocortical neurons in the ventroanterior-ventrolateral complex in urethane-anesthetized rats. This thalamic nucleus has few interneurons. Neurons that responded to cerebellar stimulation were injected intracellularly with horseradish peroxidase or biocytin and examined with light and electron microscopy (see companion paper). Intracellular membrane properties and voltage-dependent rhythmic activity of cerebellar-responsive ventroanterior ventrolateral neurons were similar to those described previously for thalamic neurons. Thus, in addition to conventional "fast" Na⁺-dependent spikes, rat ventroanterior-ventrolateral neurons had "slow" Ca²⁺-mediated low-threshold spikes and membrane conductances that supported rhythmic oscillations. Two modes of spontaneous activity were observed: (1) a tonic firing pattern that consisted of irregularly occurring fast spikes that predominated when the membrane potential was more positive than about −60 mV, and (2) a rhythmic firing pattern, observed when the membrane potential was more negative than about −65 mV, composed of periodic (4-8 Hz) membrane hyperpolarizations and ramp depolarizations that often produced a low-threshold spike and a burst of fast spikes. In some neurons, spontaneous fast prepotentials were also observed, often with a relatively constant rate (up to 70 Hz).

Cerebellar stimulation elicited excitatory postsynaptic potentials that in some cases appeared to be all-or-none and were similar in form to fast prepotentials. Stimulation of ipsilateral motor cortex elicited a short-latency antidromic response followed by a monosynaptic excitatory postsynaptic potential, which had a slower rise time than excitatory postsynaptic potentials evoked from cerebellum, suggesting that cortical inputs were electrophysiologically distal to cerebellar inputs. In the presence of moderate membrane hyperpolarization, the cortically evoked excitatory postsynaptic potential was followed by a long-lasting hyperpolarization (100-400 ms duration), a rebound depolarization and one or two cycles resembling spontaneous rhythmic activity. Membrane conductance was increased during the initial component of the long hyperpolarization, much of which was probably due to an inhibitory postsynaptic potential. In contrast, membrane conductance was unchanged or slightly decreased during the latter three-quarters of the long hyperpolarization. The amplitude of this component of the long hyperpolarization usually decreased when the membrane was hyperpolarized with intracellular current injection. Thus, both disinhibition and an inhibitory postsynaptic potential may have contributed to the latter portion of the cortically-evoked long hyperpolarization. The cortically-evoked inhibitory postsynaptic potentials likely originated predominantly from feedforward activation of GABAergic glutamatergic neurons in the thalamic reticular nuclei. The disinhibition probably resulted from activation of inhibitory circuits intrinsic to the cortex and/or corticothalamic circuits that transiently reduced tonic cortical excitatory drive onto thalamic neurons. The possibility that disinhibition occurred following experimentally-induced synchronous activation of cortical circuitry suggests that the cerebellar cortex provides a significant degree of tonic excitatory drive onto neurons in the ventroanterior-ventrolateral complex of rats.

We conclude that the synaptic and intrinsic membrane properties of thalamic neurons in the ventroanterior-ventrolateral complex of rats are fundamentally similar to previously described properties of thalamocortical neurons of other species (e.g., ferret) in related nuclei that possess GABAergic interneurons, in spite of the scarcity of GABAergic interneurons in rat ventroanterior-ventrolateral complex. Furthermore, rhythmic disinhibition of cortical inputs to thalamus may contribute to the maintenance of the rhythmic activity in thalamocortical circuits that is prominent during different behavioral states.

Abbreviations: AHP, afterhyperpolarization; dLGN, dorsal lateral geniculate nucleus; EFG, electroencephalogram; EGTA, ethyleneglycol-oxycetate; EPSP, excitatory postsynaptic potential; FFP, fast prepotential; HRP, horseradish peroxidase; IPSP, inhibitory postsynaptic potential; LTS, low-threshold spike; TRN, thalamic reticular nucleus; VAL, ventroanterior ventrolateral complex.
The cerebellar nuclei exert synaptic influences on "upper motor neurons" in primary motor cortex via dorsal thalamus.10 The primary thalamic nuclei in the cerebello-thalamo-cortical pathway in rats is the ventroanterior-ventrolateral (VAL) complex. As in corresponding thalamic nuclei of higher order mammals, the VAL receives a topographically organized input from the cerebellar nuclei and has reciprocal connections with motor cortex.4,12,5,6,8

The thalamic link in this pathway has traditionally been considered to be a single-synaptic, short-latency "relay" or "gate", depending on the operational mode of the thalamus. For example, afferent impulses from the cerebellar nuclei are conveyed to cortex with a high degree of fidelity when the thalamic neuron firing pattern is tonic and irregular, as during electroencephalogram (EEG) desynchronization. This mode is associated with sustained membrane depolarization.15 In contrast, transfer of subcortical afferent impulse activity to cortex is significantly altered when the membrane potential of thalamic neurons oscillates rhythmically between periods of burst activity and hyperpolarization, such as during EEG synchronization.20,5,4,5,6,8,94 Although consideration of thalamic nuclei as a relay/gate station during wake/sleep cycles is of heuristic value, this view is a well-appreciated oversimplification. In fact, several anatomical substrates exist for thalamic integration and processing of subcortical inputs. For example, the neurons in the thalamic reticular nucleus (TRN) are GABAergic21,13 and project topographically to dorsal thalamus.11 The TRN receives excitatory inputs from axon collaterals of corticothalamic and thalamocortical neurons95 that originate from reciprocally connected ipsilateral cortical and thalamic areas, thereby engaging the TRN in topographically-aligned feedforward and feedback inhibitory circuits with dorsal thalamus.12,83

Thalamic interneurons, which are driven by excitatory cortical and subcortical afferents, provide an additional means for GABAergic feedforward inhibition.20,65,56,57,10,49

The cerebellar-recipient ventral tier nuclei in dorsal thalamus of felines and primates possess an extensive GABAergic interneuronal synaptic network6,7,74 that works in conjunction with afferents from the TRN. In stark contrast, rodent VAL has few GABAergic interneurons.60,65,70,91 with the TRN being the only substantial GABAergic input to the VAL in rats, except for a restricted ventral territory that is innervated by the basal ganglia.12 The intrinsic membrane properties and synaptically-evoked responses of thalamic projection neurons have been well characterized in nuclei with abundant numbers of GABAergic interneurons.60,84 including motor-related thalamic nuclei in the cat.19,33,25,6,78 The paucity of interneuronal GABAergic circuitry in rat VAL provides an impetus to examine the electrophysiological properties of neurons in this nucleus. Functional comparisons with neurons in corresponding nuclei of higher order mammals, and with neurons in other thalamic nuclei in rodents that possess interneurons, should provide insight regarding the contribution of interneurons to integrative synaptic processing by the thalamus. The aim of the present study was to describe the in vivo electrophysiological properties of neurons in the VAL of rats and to examine the consequences of the absence of GABAergic interneurons on the processing of cortical and subcortical synaptic inputs by VAL thalamocortical neurons.

EXPERIMENTAL PROCEDURES

Animal surgery

Male Sprague-Dawley rats (Charles River) weighing 200–300 g were anesthetized with urethane (1.3 g/kg, i.p.), secured on a stereotaxic apparatus and prepared for intracellular recording as described previously.55 All wound margins and points of contact were coated with 3% bicarbonate ointment. The scalp was removed and small burr holes drilled to permit placement of stimulating electrodes into the left primary motor cortex (i.e. the lateral agranular frontal cortical field; A 2.5 mm from bregma, L 2.2 mm from midline, V 1.5 mm ventral to the surface of the cortex; coordinates from atlas of Paxinos and Watson96) and the right cerebellar nuclei (A −3.5 mm from lambda, L 2.5 mm, V 5.0 mm, and A −4.3 mm, L 2.8 mm, V 5.0 mm). The stimulating electrodes were affixed to the preparation with cyanoacrylate glue and dental cement, and an opening (circular at A 4.9 mm from lambda, L 2.2) was drilled above the left thalamus for recording. The cerebral cortex was left intact. The stereotaxic apparatus and recording assembly were placed on a Micro G air isolation table to minimize vibration. The atlas-opercular membrane was punctured to allow drainage of cerebrospinal fluid and the animal was suspended via C2 and tail clamps to reduce vascular- and respiratory-induced pulsations. A well of dental cement was formed around the recording hole, and after insertion of the recording electrode into the brain the well was filled with a mixture of paraffin and paraffin oil to prevent tissue drying and to increase the stability of intracellular recordings. Body temperature was maintained at 37 ± 1°C with a solid state heating pad. All animals were treated in strict accordance with the U.S. Public Health Service Guide for the Care and Use of Laboratory Animals.

Recording and stimulation

Micropipettes for intracellular recordings were made from 2.0 mm (o.d.) capillary glass (WPI) using a Narishige PE-2 pipette puller. For horseradish peroxidase (HRP) filled microelectrodes, the tips were broken to approximately 0.2–0.6 µm under microscopic control. The micropipettes had in vivo impedances ranging from 50 to 100 MΩ and were filled with one of the following solutions: (i) 5% HRP (Sigma Type VI) in 0.5 M potassium methylsulfate and 0.05 M Tris buffer (pH 7.6); (ii) 3% biocytin in 1 M potassium acetate; or (iii) 3 M potassium acetate and 0.2 M EGTA. Intracellular recordings were performed with either a WPI M-700A or NeuroData JR-183 a bridge amplifier, monitored with a Tektronix 565 or 5113 dual beam oscilloscope, and digitized on-line by a Nicolet 2090 or 4094C digital oscilloscope.

Extracellular stimulating currents were monophasic rectangular wave pulses (0.1–2.0 ms, 20–300 µA) delivered through bipolar enamel-coated stainless steel wires (250 µm tip separation) with a Grass 58-S8 stimulator and a Grass SIU-5 stimulus isolation unit or a Winston A-65 timer and SC-100 constant current stimulator/isolator.
Electrophysiological characterization and intracellular labeling

The bridge balance and capacity compensation were adjusted prior to and immediately after impalement, and subsequently checked extracellularly. Non-linearities of the HRP-filled recording microelectrodes often hampered precise determination of membrane potential during current injection, but this difficulty was largely overcome by the use of biocytin-filled microelectrodes.37

Following impalement and stabilization of thalamic neurons, the cerebellar nucleus and motor cortex were stimulated to evoke synaptic and antidromic responses. Responses were characterized as antidromic (from cortical stimulation) based on constant latency, absence of underlying synaptic potentials, and collision with spontaneous and intracellularly-evoked spikes.38 In many neurons, intrinsic membrane properties were investigated using a variety of paradigms involving intracellular current injection. If stable recordings persisted throughout the electrophysiological characterization and the neuron responded to cerebellar stimulation, HRP or biocytin was microiontophoretically injected into the neuron with 2-3 nA depolarizing current pulses (300 ms duration pulses with a 50% duty cycle) for 5-10 min. Only one neuron was injected per stained.

Alterations in neuronal input resistance were examined during cortically-evoked responses by injection of hyperpolarizing pulses (0.1-0.2 mA, 15-25 ms duration) over the time course of the cortically-evoked response. Changes in membrane potential due to the injection of current were used to calculate input resistance. Since membrane potential often changed substantially during the current pulse due to the time-varying aspects of the cortically-evoked response, it was necessary to compute the membrane potential deflection relative to an interpolated membrane potential that was derived from values before and after the current pulse.

The membrane time constant and neuron electronic length of VAL neurons were estimated from analysis of membrane potential transients in response to small intracellular hyperpolarizing current pulses using a computer program (Oscilloscope) written and kindly provided by Dr. C. J. Wilson. Peak amplitudes of membrane potential transients were used to calculate cable parameters of neurons from the relation \(L = \pi f_i (r_m r_c)^{-1} \), where \(f_i \) is electronic length of the neuron; \(r_m \), the slow time constant, provides an estimate of \(r_m \); the passive membrane constant; and \(r_c \), the fast (equalizing) time constant.36

Tissue preparation and anatomical analysis

Details about tissue processing for light and electron microscopy are presented in the companion paper.36 Tissue sections containing intracellularly stained neurons were examined with a Leitz Ortholux 11 light microscope using \(\times 50 \) and \(\times 100 \) oil immersion objective lenses. The location of stimulating electrodes in motor cortex and the cerebellar nuclei was confirmed histologically in frozen sections counterstained with Neutral Red.

Statistics

Statistical analyses utilized Student’s t-test. Data are summarized in the text as mean ± S.E.M.

RESULTS

Spontaneous activity and intrinsic membrane properties of ventroanterior—ventrolateral neurons

Database. Stable intracellular recordings were obtained from 93 neurons. Intracellular recordings from the VAL were obtained exclusively from thalamocortical neurons, based on electrophysiological properties and antidromic activation from cortical stimulation (see below) and, for intracellularly stained neurons, light microscopic examination. Intracellular injection of biocytin, which crosses gap junctions,41 was never observed to label more than one neuron. A photomicrograph of an intracellularly stained VAL neuron that responded to cerebellar stimulation with a monosynaptic excitatory postsynaptic potential (EPSP) is shown in Fig. 1. The axon of this neuron was traced into motor cortex. A full description of the anatomy of the intracellularly stained neurons is presented in the companion paper.40

Two operational firing modes. VAL neurons displayed two distinct patterns of spontaneous spike activity that are common to thalamic relay neurons: a “tonic firing mode”, characterized by irregular firing of conventional Na⁺-dependent,42 fast action potentials (1.0-1.7 ms duration; 50-70 mV amplitude) (Fig. 2), and a “rhythmic firing mode”, in which oscillations in membrane potential often resulted in periodic (4-8 Hz) all-or-none “slow” action potentials (20-40 ms; 20-35 mV) upon which one or more fast action potentials often rode (Fig. 3). The slow action potentials were separated by a long-lasting (100-250 ms) hyperpolarization that gradually subsided to ramp membrane depolarization. As described below, slow action potentials appeared to be identical to the ,43dependent low-threshold spikes (LTSs) described by Linas and Jahnson,43 and we adopt this terminology.

The tonic mode predominated when the steady state membrane potential of the neuron was more depolarized than about -60 mV. This firing mode was characterized by a roughly linear relation between firing rate and the extent of membrane depolarization, with little evidence of spike frequency adaptation below ~100 spikes/s (Fig. 2B, C). In contrast, rhythmic firing occurred when the neuron was hyperpolarized beyond about -65 mV, and firing rates of fast spikes were not linearly related to membrane depolarization. Many but not all VAL neurons could be converted to spontaneous rhythmic firing with intracellular injection of hyperpolarizing current.

Characterization of low-threshold spikes. Similar to neurons in other thalamic nuclei,5,6,39,40,44,45,46 LTSs had regenerative properties with a longer time course and different ionic basis than those of conventional fast action potentials. For example, LTSs occurred in an all-or-none fashion with a threshold of about -65 mV, compared to a more depolarized threshold of about -50 to -55 mV for fast spikes (Fig. 3A). Once triggered, the conductance underlying the LTS inactivated, requiring sustained membrane hyperpolarization for de-inactivation (Fig. 3C). The ionic basis of LTS generation was an increase in intracellular levels of Ca²⁺ ions, presumably by means of Ca²⁺ influx via voltage-dependent channels,5,6,7,39,46 since spontaneous and evoked LTSs were blocked within minutes of impalement with microelectrodes that
Cable properties. The input resistance of thalamic neurons ranged from 9 to 40 MΩ. Most VAL neurons exhibited a small degree of outward rectification during membrane hyperpolarization, as illustrated in Fig. 4B. Electrotonic properties were calculated for three VAL neurons by peeling exponentials of voltage transients to current pulse injections. The first two peeled exponentials yielded slow (τ_0) and fast (τ_1) time constants. The membrane time constant ($\tau_m \approx \tau_0$) was 22.3 ± 6.4 ms, with a fast transient of 1.37 ± 0.13 ms. The amplitudes of the slow (E_0) and fast (E_1) exponentials were 0.64 ± 0.09 and 0.79 ± 0.24, respectively. The neuronal electrotonic length (L_{eq}) was 0.79 ± 0.07. The cable properties of a representative VAL neuron are shown in Fig. 4C.

Synaptic responses of ventroanterior–ventrolateral neurons

Cortically-evoked responses. Electrical stimulation of ipsilateral motor cortex produced a characteristic response that consisted of a short-latency action potential, an EPSP, and a voltage-dependent late hyperpolarization/ramp depolarization sequence. The initial component of cortically-evoked responses was often a short-latency (1.22 ± 0.09 ms; $N = 53$) antidromic spike (Fig. 5A) that was extinguished by collision with spontaneous or intracellularly evoked spikes. Antidromic invasion was often observed only when neurons were depolarized with current injection, and was blocked by injection of hyperpolarizing current. On rare occasions, an “M” spike? was evident when the full antidromic spike was absent, suggestive of a failure of the antidromic
In vivo electrophysiology of rat VAL neurons

715

Fig. 2. Tonic firing mode of VAL thalamic neurons. (A) Irregular spike activity in the absence of any prominent oscillations in membrane potential. This firing mode predominated when VAL neurons were relatively depolarized (membrane potential more positive than about −60 mV). (B) Depolarizing current pulses evoked fast spikes with a threshold of about −54 mV in this neuron. (C) The relation between membrane potential and firing rate for a VAL neuron. Based on traces in B and other traces not shown. The firing rate of this neuron was linearly related to membrane potential with no spike frequency adaptation up to 130 spikes/s. Same neuron in A–C. Micropipette electrolyte was 1 M potassium acetate and 3% bicynet.

Fig. 3. Rhythmic firing mode of VAL thalamic neurons. (A) The rhythmic firing mode was observed when VAL neurons were relatively hyperpolarized (membrane potential more negative than −65 mV). In this example, spontaneous oscillations in membrane potential occurred with a period of 125 ms, with each cycle of membrane hyperpolarization followed by a ramp depolarization. All-or-none LTSs (arrows) were usually elicited during the depolarization phase of spontaneous membrane potential oscillations, and fast spikes rode on LTSs. The dashed line indicates the LTS threshold voltage (−64 mV). The depolarization did not always reach threshold for generation of an LTS (asterisk). Micropipette electrolyte was 0.5 M potassium methylsulfate and 5% HRP. (B) Blockade of LTS with a micropipette that contained 0.2 M EGTA. Within the first minute of impalement (thicker voltage trace), rebound depolarization during offsets of the conditioning hyperpolarizing current injection resulted in LTSs (arrows). Five minutes after impalement (thinner voltage trace) the same current injection parameters failed to elicit an LTS, although membrane potential (−52 mV with no constant current injection) and input resistance (15 MΩ) did not change during impalement. (C) Time course of de-inactivation of LTSs. Conditioning hyperpolarizing current was injected into a VAL neuron that had a relatively depolarized membrane potential (−53 mV, positive to LTS threshold, so LTS was inactivated). Depolarizing pulses at various time intervals after the onset of the conditioning hyperpolarization revealed that about 100 ms was necessary for de-inactivation of LTS at this level of membrane hyperpolarization. Arrows point to evoked LTSs. Different neurons in A−C. Amplitudes of fast spikes in A–C were truncated by digitization of analog signals.
The amplitude of the cortically-evoked long AHP in VAL neurons was dependent upon membrane potential in two ways. First, a certain level of hyperpolarization was usually necessary for cortical stimulation to elicit a prominent long AHP (and rebound depolarization), as shown in Fig. 5C. Second, as the neuron was further hyperpolarized with constant current injection, the long AHP, while still prominent, was often reduced in amplitude (Fig. 6A, B).

To monitor changes in neuronal input resistance in response to cortical stimulation, small hyperpolarizing current pulses (12–25 ms, 0.1–0.2 nA) were injected into some cerebellar-responsive neurons before and during cortically-induced responses. Care was taken to select neurons with relatively linear current–voltage (I–V) relations for this analysis. Two components of the long AHP were revealed based on changes in membrane input resistance: an early component (the initial 30 ms) during which input resistance was decreased by 25%, and a later component in which input resistance was unchanged or slightly increased (Fig. 6C).

Cerebellar-evoked responses. Stimulation of the cerebellar nuclei produced a short-latency monosynaptic EPSP (2.12 ± 0.10 ms onset latency; N = 54) from which fast spikes arose. These EPSPs usually exhibited an all-or-nothing character, and their amplitude often (but not always) increased with membrane hyperpolarization. Cerebellar-evoked EPSPs had a faster rise time (0.76 ± 0.11 ms time to peak, N = 10) than did cortically-evoked EPSPs (4.00 ± 0.77 ms, N = 7; t = 4.96; P < 0.01, d.f. = 16). Unlike the cortically-excited response, stimulation of the cerebellar nuclei did not produce rhythmic activity or a prominent long AHP, although a period of inactivity typically lasting 100–500 ms usually followed the EPSP (Fig. 7D).

Fast prepotentials

Many thalamocortical VAL neurons exhibited all-or-none spontaneous triangular-shaped depolarizing potentials (Fig. 7C). These fast prepotentials (FPPs) had an amplitude of 3–10 mV, with a fast rise and slow decay that resembled EPSPs elicited from cerebellar stimulation (Fig. 7B). Indeed, rise times of FPPs (0.63 ± 0.04 ms time to peak, N = 145) and cerebellar-evoked EPSPs (0.76 ± 0.11, N = 10) were statistically indistinguishable (t = 0.82, P > 0.05, d.f. = 154). FPPs were observed over a wide range of membrane potentials, and in some neurons occurred at a relatively constant rate (up to 70 Hz) (Fig. 7C). Single spikes arose from the FPPs when the neuron was depolarized.
In vivo electrophysiology of rat VAL neurons

Figure 5. Cortically-evoked responses in VAL neurons. (A) Short-latency responses to stimulation of the ipsilateral motor cortex. A short-latency antidromic spike (arrowhead) was followed by a monosynaptic EPSP. Four single sweeps at different membrane potentials are superimposed to emphasize differences in EPSP amplitudes. The amplitude of the EPSP increased with increasing levels of membrane hyperpolarization. Membrane potential varied from -56 mV (no intracellular constant current injection; smallest amplitude EPSP) to -70 mV (constant injection = -1.5 nA; largest amplitude EPSP). In all panels, arrows point to cortical stimulus artifacts. (B) Power series for EPSPs elicited by cortical stimulation. Increasing the amplitude of cortical stimulation (0.4, 0.7, 1.0 mA) increased the amplitude of the EPSP without altering the onset latency of the cortically-evoked EPSP, indicative of a monosynaptic synaptic input. Each trace is an average of four sweeps. Membrane potential = -60 nV. (C) Effect of membrane potential on latencies of the cortically-evoked response. Left trace: with membrane potential at -55 mV, cortical stimulation elicited an antidromic spike (arrowhead) followed by a period of 500 ms without action potentials during which there was no prominent change in membrane potential. Rebound activity after 500 ms was confined to "fast" spikes. Right trace: at -65 mV (constant current injection = -0.75 nA), cortical stimulation elicited an antidromic spike, a long AHP and a rebound LTS. (D) Cortical stimulation produced an EPSP, long AHP, rebound LTS with a burst of fast spikes, and a second cycle of hyperpolarization. "Rhythmic activity" dissipated after two cycles. Overlay of three traces. Micropipette electrolyte was 1 M potassium acetate and 3% biocytin for all traces. Different neurons in A-D. Amplitude of fast spikes in A, C and D was truncated by digitization of analog signals.

Discussion

Neuronal identification

All intracellular recordings obtained in the experiments reported here were presumed to be from thalamocortical relay neurons. This conclusion is drawn from evidence that in the VAL of rats: (i) GABAergic (local circuit) neurons are scarce; (ii) virtually all neurons in the VAL are retrogradely labeled from injections of HRP into motor cortex; (iii) the axons of all intracellularly labeled VAL neurons were traced beyond the boundaries of dorsal thalamus as they coursed in the direction of the cerebral cortex; and (iv) the antidromic activation of most VAL neurons from stimulation of cerebral cortex (this report).

Intrinsic membrane properties of ventroanterior–ventrolateral neurons

Thalamic projection neurons possess membrane conductances (e.g. \(I_{Na^+}, I_{K_1}, \alpha I_{Ca^2+}, \beta I_{Ca^2+}, I_{Na}, I_{K}, I_{K_1(2.4)}, I_{K_2}, I_{Na_1(1.4)} \)) whose voltage-dependent interplay can support the generation of tonic and spontaneous delta-like (0.5-4 Hz) rhythmic activity under specific in vitro and in vivo experimental conditions. Likewise, this study confirmed that rat VAL neurons have, in addition to conventional \(Na^+ \) spike conductances, the \(Ca^{2+} \) conductance \((I_{Ca}) \)

Figure 6. Evidence that the cortically-evoked long AHP in rat VAL neurons was a combination of an IPSP and cortical disinhibition. (A) Stimulation of motor cortex (arrow) evoked an EPSP followed by a prominent long AHP. The amplitude of the AHP decreased as the neuron was hyperpolarized with constant current injection (0.0, -1.0, -1.5 nA). (B) \(I-V \) plot of membrane potential before cortical stimulation and during maximum hyperpolarization of long AHP. The reversal potential of the long AHP was estimated to be about -90 mV (intersection of the two lines), i.e. near the \(K^+ \) equilibrium potential. (C) Graphical representation of the time course of membrane potential and input resistance following stimulation of motor cortex for three VAL neurons that had minimal membrane rectification. A decrease in input resistance coincided with the initial component of the long AHP, presumably generated by a GABAergic IPSP. In contrast, during the latter stages of the long AHP, input resistance was slightly elevated or unchanged compared to resting (prestimulation) values.
The voltage-dependent switch from tonic to rhythmic firing in vivo by thalamic projection neurons is driven largely by phasic synaptic inputs from the TRN\(^{[4,9,91,94,103]}\) in conjunction with altered activity from a variety of thalamic afferents originating in the brainstem\(^{90,94}\) and possibly cerebral cortex,\(^{95}\) although cortex is not necessary for thalamic spindle generation.\(^{98,108}\) For example, neurons in the TRN have intrinsic pacemaker properties,\(^{86,102,103}\) and protracted burst firing of these neurons has been correlated with periods of inhibition in recipient dorsal thalamic nuclei.\(^{83,94}\) A current hypothesis that is in accord with the anatomy of the VAL is that periodic burst firing by TRN neurons produces a barrage of inhibitory postsynaptic potentials (IPSPs)\(^{92,100}\) that hyperpolarize VAL neurons, resulting in the de-inactivation of \(I_T\) and the engagement of a cascade of membrane conductances that support membrane potential oscillations and rhythmic firing.\(^{74,111,115,94}\)

Cable properties of ventroanterior–ventrolateral neurons

The time constant (\(\tau_c\)) and electrotonic length (\(L_e\)) of neurons in the VAL were similar to previously reported values for relay neurons in other thalamic nuclei.\(^{9,16}\) These values can only be taken as approximations due to violations of the equivalent cylinder model.\(^{106,113}\) With this caveat in mind, the values none the less indicate that VAL neurons integrate synaptic inputs over a relatively long time frame and are electrotonically compact. Thus, changes in membrane potential arising from synaptic inputs and intrinsic membrane conductances at distal dendrites would be expected to have significant effects at the cell body.

Cortically-evoked synaptic responses

Monosynaptic excitatory postsynaptic potential.

Cortically-evoked EPSPs had a slower rise time than cerebellar-evoked EPSPs, suggesting that cortical synaptic inputs were electrotonically distal to cerebellar inputs. Similar inferences have been made for neurons in the cat ventrolateral nucleus.\(^{102}\) Although a temporal dispersion of conduction times for corticothalamic axons could also contribute to the slower rise time,\(^{12}\) anatomical studies have shown that most putatively identified corticothalamic axons do indeed synapse onto rat VAL neuron dendrites distal to inputs from the cerebellum.\(^{92,96}\) Similar synaptic arrangements of cortical inputs onto thalamocortical neurons are found in other thalamic nuclei of many mammalian species.\(^{12}\)

Long after hyperpolarization.

When VAL neurons were slightly hyperpolarized, cortical stimulation elicited a long AHP that persisted for 100–400 ms, followed by a rebound ramp depolarization that often generated an LTS. This response profile has been described since the 1960s,\(^{3}\) although the origin of the synaptically-induced long AHP has been a source of controversy.\(^{2}\) More recently, it has been determined that spontaneous and synaptically-
evoked long AHPs of neurons in many thalamic nuclei have multiple components involving activation of GABA receptors. Both GABA_A and GABA_B receptors are present in moderate levels in rat VAL. The initial component of the long AHP is probably mediated primarily by GABA_A receptors, since it entails an increase in membrane conductance (Fig. 6C), is reversed by intracellular injection of Cl⁻ and is blocked by GABA_A receptor blockers. As mentioned in the Introduction, there are two known sources of GABAergic inputs to thalamic neurons that could mediate IPSPs from stimulation of cortex: an intrinsic source, the GABAergic thalamic interneurons, which form dendrodendritic and axodendritic synapses with thalamic projection neurons, and an extrinsic source, the GABAergic neurons in the TRN. Considering the scarcity of interneurons in rat VAL, the TRN is more likely the mediator of any GABAergic contribution to cortically-evoked long AHPs in this nucleus. The TRN sends a GABAergic projection that terminates on thalamocortical neurons and stimulation of the TRN elicits a GABA_A IPSP and a less pronounced GABA_B IPSP in rat thalamic neurons. This GABAergic circuit is driven by monosynaptic excitatory axon collaterals from corticothalamic and thalamocortical neurons. With respect to IPSPs arising from cortical stimulation, the corticothalamic pathway constitutes feedforward inhibition and the thalamocortical pathway a feedback inhibition (via antidromic activation of thalamocortical neurons). The feedforward pathway is probably the more significant contributor to a cortically-evoked IPSP, since there are substantially more corticothalamic neurons than thalamocortical neurons.

The latter two-thirds of the synaptically evoked long AHP has been the subject of numerous in vitro studies of neurons in the dLGN nucleus of rats. Unlike VAL, the rodent dLGN has a substantial population of GABAergic interneurons. For in vitro preparations in which the visual sector of the TRN has been excised, a long AHP can be elicited in presumed thalamocortical neurons in the dLGN from stimulation of the optic tract. The latter component of the long AHP (latency of 20-40 ms) is blocked by GABA_A receptor antagonists and is due to an increase in K⁺ conductance. Thus, at least in the dLGN, this component of the AHP appears to result largely from feedforward activation of GABAergic interneurons. In addition, there is evidence from in vitro and in vivo experiments that a variety of K⁺ conductances intrinsic to thalamic relay neurons also contribute to the latter portion of the long AHP.

If the cortically-evoked long AHP observed in VAL neurons in the present study resulted predominantly or exclusively from GABAergic synaptic drive (from the TRN) and activation of intrinsic conductances, a decrease in input resistance would be expected during the long AHP. For example, the in vitro input resistance of rat dLGN neurons decreases by 75% and 13-45% following stimulation of the optic tract during the early and late portions, respectively, of the long AHP that is mediated by interneurons. In contrast, in this in vivo study, whereas the input resistance of VAL neurons during the early part of the cortically-evoked long AHP was substantially reduced, input resistance did not change or was slightly increased during the latter portions of the cortically-evoked long AHP. This suggests that an additional mechanism was involved in the generation of the cortically-evoked long AHP.

In addition to the GABAergic and intrinsic membrane responses, a cortical disfacilitation could contribute to the hyperpolarization during the latter two-thirds of the long AHP for rats under urethane anesthesia. Motor cortex provides a massive, excitatory projection to the VAL and cortical neurons maintain spike activity under the urethane anesthesia used in the present study. Electrical stimulation of motor cortex not only activates corticothalamic neurons but also elicits a synchronous engagement of cortical and thalamic inhibitory circuits that reduces spike activity for hundreds of milliseconds. Reverberating activity in corticothalamic circuits following cortical stimulation may also contribute to the generation of inhibition in cortex. Hence, following the initial direct excitation of corticothalamic neurons resulting from cortical stimulation, VAL neurons would be expected to experience a period of reduced tonic depolarizing input from cortex, resulting in a hyperpolarization and a concomitant increase in membrane resistance as a consequence of the membrane rectification of these neurons. The net change in input resistance during the latter components of the long AHP would therefore be a balance of increased input resistance from disfacilitation and decreased input resistance from the presumed activation of GABAergic synapses from the TRN and intrinsic membrane conductances. Stimulation of the corticothalamic tract does not elicit disfacilitation in in vitro studies of thalamic neurons (e.g. Ref. 55), since the reverberatory cortical inhibitory circuits have been excised in this preparation. A significant component of hyperpolarization following cortical stimulation has been attributed to disfacilitation for thalamic and striatal neurons in urethane-anesthetized rats, and acute decortication produces hyperpolarization and increased input resistance in thalamic neurons of urethane-anesthetized rats. Furthermore, the prominence of cortical disfacilitation in in vitro studies may depend on the anesthetic used, e.g. urethane vs barbiturates.

In vitro studies of thalamocortical neurons in rat dLGN have shown that the amplitude of the GABA_B component of the synaptically-evoked long AHP is maximal when the membrane potential is between -60 and -75 mV. This response reverses at potentials negative to the K⁺ reversal potential, as would be expected for an IPSP that is mediated by an increase in K⁺ ions. In contrast, the amplitude of
cortical disinhibition would be expected to increase with membrane hyperpolarization, since its reversal potential would be the same as cortically-evoked EPSPs, i.e. between 0 and -20 mV. Hence, if the latter component of the cortically-evoked long AHP is indeed the combined action of both a GABA_A IPSP and cortical disinhibition, then the effects of membrane hyperpolarization on this response are difficult to predict, since the amplitudes of the IPSP and disinhibition would be inversely affected. In our *in vivo* experiments, injection of hyperpolarizing current usually reduced the amplitude of the latter two-thirds of the long AHP. It was not possible to reliably sustain a hyperpolarization of VAL neurons beyond -80 mV with intracellular current injection (possibly due to tonic GABA_A synaptic bombardment from the TRN with urethane-induced anesthesia), so complete reversal of the long AHP was not accomplished. However, an extrapolated reversal potential was in the range of the K^+ equilibrium potential for most VAL neurons, indicative of a substantive role for a GABA_A IPSP in mediating this latter component of the long AHP. In other neurons, the long AHP exhibited little change in amplitude as a function of membrane hyperpolarization, a result that is consistent with a summed contribution of an IPSP and cortical disinhibition.

Although cortical disinhibition results from a non-physiological synchronous activation of cortical neurons, the presence of this phenomenon has functional implications for thalamocortical interactions. The existence of stimulus-induced cortical disinhibition indicates that the cerebral cortex provides a substantial tonic excitatory drive onto thalamic neurons that may be critical for effective transmission of excitatory prethalamic inputs by thalamocortical neurons, or conversely may "compete" with prethalamic inputs. During synchronized EEG activity, neurons in thalamic nuclei exhibit periodic oscillations in membrane potential that generate rhythmic spike activity that is conveyed to, and imposed upon, the cerebral cortex. In turn, rhythmic activity by cortex would be expected to elicit alternating episodes of cortical facilitation and disinhibition of thalamocortical neurons, thereby serving to reinforce reverberatory rhythmic thalamocortical activity driven by the TRN. Conversely, during spontaneous EEG desynchronization, disinhibition would be absent and the unsynchronized tonic excitatory input by cortex onto thalamus would promote the sustained depolarized state of thalamocortical and TRN neurons, which would reinforce the irregular, non-rhythmic firing mode in thalamus.

Cerebellar-evoked synaptic responses

Stimulation of the contralateral cerebellar nuclei evoked a short-latency, monosynaptic EPSP that was often followed by a period of reduced spike activity. EPSPs from cerebellar stimulation exhibited a rapid rise and a slow decay time that resulted in a sustained depolarization. Additionally, cerebellar EPSPs appeared to be all-or-none, suggesting a synaptic response mediated by one or a few axons. Similar responses have been observed in cat motor thalamus in response to cerebellar stimulation, with one possible difference being that the falling phase of the slowly-decaying EPSP in cats is often cutaneous by an IPSP. This distinction merits further study, as it may represent a consequence of feedforward activation of GABAergic interneurons in the cat, a response that would be expected to be absent in VAL of rats.

A poststimulus inhibition usually followed the cerebellar-evoked EPSP but, in contrast to the case for cortical stimulation, this inhibition occurred in the absence of a prominent, protracted voltage-dependent hyperpolarization and did not induce rhythmic firing. A similar response profile to cerebellar stimulation occurs in the cat ventral lateral nucleus. There are a number of explanations for the differences in response profiles to cortical vs cerebellar stimulation. First, it is possible that cerebellar stimulation, unlike cortical stimulation, does not produce a prominent disinhibition, in spite of the fact that cerebellothalamic neurons are active under urethane anesthesia. The number of synapses onto VAL neurons originating from the cerebral cortex far exceeds those from the cerebellum, and it is presumed that cortex supplies a greater degree of tonic depolarization. Second, as discussed above, a component of the cortically-evoked long AHP likely results from monosynaptic activation of the GABAergic TRN→thalamus projection. In contrast, the cerebellum does not project to the TRN. Thus, whereas TRN-induced inhibition of VAL neurons from cortical stimulation would require suprathreshold activation across only one synapse (cortex→TRN), a cerebellar-mediated inhibition of VAL neurons would require suprathreshold activation across two synapses (cerebellum→VAL→TRN).

Fast prepotentials

Spontaneous and synaptically evoked FPPs were recorded from many neurons in the VAL, and were sometimes observed to occur rhythmically at rates approaching 70 Hz. Similar findings have recently been reported for neurons in motor thalamus of urethane-anesthetized rats and cats, and may have an intrinsic or extrinsic origin. Electrical coupling can be ruled out as a source of FPPs due to the absence of gap junctions in dorsal thalamus and the lack of dye coupling between neurons following intracellular injection of Lucifer Yellow or, as observed in the present study, biocytin. Rather, the similarity of rise times, decay times, amplitudes and all-or-none character of FPPs and cerebellar-evoked EPSPs suggest that FPPs in rat VAL neurons may be spontaneous occurrences of unitary EPSPs, or dendritic spikes driven by impulse activity in cerebellar axons. A role for cerebellothalamic axons in
the generation of FPPs is consistent with the rhythmic, fast firing rates of cerebellothalamic neurons in urethane-anesthetized rats.4

CONCLUSION

When comparing the electrophysiological characteristics of neurons in the VAL of rats with neurons in functionally-related thalamic nuclei in other mammalian species, a striking finding is the qualitative similarity in parameters of spontaneous activity, intrinsic membrane properties and synaptic activation from subcortical and cortical afferents, in spite of the lack of interneurons in the VAL. Additional insights about the functional role of thalamic interneurons, drawn from these electrophysiological data and from ultrastructural anatomical findings, are discussed in the accompanying paper.

Acknowledgements—The authors thank Dr C. J. Wilson for providing the computer software used to analyse cable properties of neurons, Dr G. Buzsáki for comments on the manuscript, and Elizabeth Harkins and Meri Damlaan for assistance in tissue processing. This study was supported by grants DA-02854 to P.M.G. and MH-45286 to J.M.T.

REFERENCES

(Accepted 7 June 1994)